Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Twitter Facebook YouTube Pinterest MeWe

RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

The greenhouse effect and the 2nd law of thermodynamics

What the science says...

Select a level... Basic Intermediate

The 2nd law of thermodynamics is consistent with the greenhouse effect which is directly observed.

Climate Myth...

2nd law of thermodynamics contradicts greenhouse theory

 

"The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier 1824, Tyndall 1861, and Arrhenius 1896, and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist." (Gerhard Gerlich)

 

Skeptics sometimes claim that the explanation for global warming contradicts the second law of thermodynamics. But does it? To answer that, first, we need to know how global warming works. Then, we need to know what the second law of thermodynamics is, and how it applies to global warming. Global warming, in a nutshell, works like this:

The sun warms the Earth. The Earth and its atmosphere radiate heat away into space. They radiate most of the heat that is received from the sun, so the average temperature of the Earth stays more or less constant. Greenhouse gases trap some of the escaping heat closer to the Earth's surface, making it harder for it to shed that heat, so the Earth warms up in order to radiate the heat more effectively. So the greenhouse gases make the Earth warmer - like a blanket conserving body heat - and voila, you have global warming. See What is Global Warming and the Greenhouse Effect for a more detailed explanation.

The second law of thermodynamics has been stated in many ways. For us, Rudolf Clausius said it best:

"Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher temperature."

So if you put something hot next to something cold, the hot thing won't get hotter, and the cold thing won't get colder. That's so obvious that it hardly needs a scientist to say it, we know this from our daily lives. If you put an ice-cube into your drink, the drink doesn't boil!

The skeptic tells us that, because the air, including the greenhouse gasses, is cooler than the surface of the Earth, it cannot warm the Earth. If it did, they say, that means heat would have to flow from cold to hot, in apparent violation of the second law of thermodynamics.

So have climate scientists made an elementary mistake? Of course not! The skeptic is ignoring the fact that the Earth is being warmed by the sun, which makes all the difference.

To see why, consider that blanket that keeps you warm. If your skin feels cold, wrapping yourself in a blanket can make you warmer. Why? Because your body is generating heat, and that heat is escaping from your body into the environment. When you wrap yourself in a blanket, the loss of heat is reduced, some is retained at the surface of your body, and you warm up. You get warmer because the heat that your body is generating cannot escape as fast as before.

If you put the blanket on a tailors dummy, which does not generate heat, it will have no effect. The dummy will not spontaneously get warmer. That's obvious too!

Is using a blanket an accurate model for global warming by greenhouse gases? Certainly there are differences in how the heat is created and lost, and our body can produce varying amounts of heat, unlike the near-constant heat we receive from the sun. But as far as the second law of thermodynamics goes, where we are only talking about the flow of heat, the comparison is good. The second law says nothing about how the heat is produced, only about how it flows between things.

To summarise: Heat from the sun warms the Earth, as heat from your body keeps you warm. The Earth loses heat to space, and your body loses heat to the environment. Greenhouse gases slow down the rate of heat-loss from the surface of the Earth, like a blanket that slows down the rate at which your body loses heat. The result is the same in both cases, the surface of the Earth, or of your body, gets warmer.

So global warming does not violate the second law of thermodynamics. And if someone tells you otherwise, just remember that you're a warm human being, and certainly nobody's dummy.

Basic rebuttal written by Tony Wildish


Update July 2015:

Here is the relevant lecture-video from Denial101x - Making Sense of Climate Science Denial

 


Update October 2017:

Here is a walk-through explanation of the Greenhouse Effect for bunnies, by none other than Eli, over at Rabbit Run.

Last updated on 7 October 2017 by skeptickev. View Archives

Printable Version  |  Offline PDF Version  |  Link to this page

Argument Feedback

Please use this form to let us know about suggested updates to this rebuttal.

Related Arguments

Further reading

  • Most textbooks on climate or atmospheric physics describe the greenhouse effect, and you can easily find these in a university library. Some examples include:
  • The Greenhouse Effect, part of a module on "Cycles of the Earth and Atmosphere" provided for teachers by the University Corporation for Atmospheric Research (UCAR).
  • What is the greenhouse effect?, part of a FAQ provided by the European Environment Agency.

References

Comments

Prev  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  Next

Comments 576 to 600 out of 633:

  1. Tom Curtis @ 573: Wow, that's a whole different picture from what I had in mind. Very enlightening!... So, it sound like the vertical pressure gradient is a key factor controlling the lapse rate at least in the troposphere, and then GH gases affect directly only the upper troposphere temperature, and controls the surface temperature indirectly through the lapse rate, correct? Let me ponder on this for a while before I continue this amazing (at least to me) discussion.
  2. The following is a diagram to illustrate the importance of the lapse rate from one of the best simple explanations of the Green House effect that I know of. (Warning, it contains some maths; but you do not need to follow the maths to understand the explanation.) One point the diagram illustrates which I haven't mentioned is that GHG "sets the temperature at the top of the troposphere" (which on reflection, is not the best wording) by adjusting the altitude from which the Earth effectively radiates to space at different frequencies.
  3. Re #573 Tom Curtis, very interesting contribution. You are certainly correct about radiation playing a minor role in transferring energy in the bulk of the troposphere. But I have a problem with your explanation for the 'top of the trop.' I suggest it is the absorption of ultraviolet by O2 that dominates the heating of the atmosphere above the tropopause. About 10% of the Sun's radiant energy is absorbed by O2 and of course the resultant O3. This 'stratospheric heating' occurs even with the rather small amount of UV energy because the density of air is so low 'up there'. And, being a heating effect and causing the temperature to rise, it produces what is called, in the troposphere, a temperature inversion, a condition with warm air over cold, known to supress convection and produce stable air conditions, just the reason why jet transports like to fly in the stratosphere. The temperature at the bottom of the stratosphere ('top of the trop.') can be -60C but it rises steadily to about 0C at 60 to 65km.
  4. damorbel @578, you are of course correct about the stratosphere. Further, without the absorption of UV by the dissociation of O2 and O3, there would be no temperature inversion in the stratosphere. However, even without that absorption, radiation rather than convection would dominate energy transfers in the stratosphere as I have described, and for the reasons given. I had considered giving the fuller explanation, but opted for brevity.
  5. damorbel @ 570 The diagram is not about temperature. Its about incoming solar radiation expressed in W/m^2 and how it is distributed throughout the Earth's climate system, which is the proper unit of measure for that particular type of energy (Incoming Solar Radiation). The 2009 diagram shows slightly different numbers from your example which was published in 1997 because the data has been updated. Why would Ternberth or anyone for that matter want to use 12 year old data when more up to date data is available? And again, the diagram is about the distribution of energy, not temperature.
  6. Damorbel, "just the reason why jet transports like to fly in the stratosphere." You should have explored this more before throwing it in the discussion as if it was fact. At mid latitudes, the average height of the troposphere is 17 km, it gets higher toward the equator, lower toward the poles. At our latitudes, transport jets fly mostly between 8 and 13 km (25 to 42000 ft pressure altitude). A number of business jets are designed to handle transonic speeds and can be comfortably flown up to 50000 ft or even higher. However, they are not true stratospheric airplanes. Even commercial transport jets operate on a relatively thin margin of safe airspeed. As air density decreases, an aircraft needs more and more speed to generate lift, edgeing close to the speed of sound. At high altitudes, the difference between stall speed and maximum speed for the aircraft's design (beyond which flight controls may become ineffective) becomes small enough to be a concern. Stratospheric flight requires specific design or the ability to go supersonic. Modern transport jets are not designed to fly in the stratosphere and pilots do not like to go higher than 45000 feet. Not only their safe airspeed range shrinks but the risks from a decompression accident increase dramatically. In a 2 men crew airplane, if one pilot leaves his station, the other must wearing the oxygen mask, and keep it until the other crewmember returns. At 40000 feet, you have about 18 seconds of useful consciousness if you're a healthy adult. There is plenty of smooth air between 15 and 25000 feet, the reason why long range transport jets fly above 30000 is fuel consumption. When there is weather generating turbulence at these kind of altitudes, it is most likely convective in nature and can extend to 55000 ft or more, you can't beat it by climbing.
  7. To ALL: I'd like to get the discussion back to the topic at hand, the Greenhouse Effect, if I may (since this is so fascinating!). I'm curious to know, if there is a broad consensus among this group about 3 aspects of the GH effect discussed above by Tom Curtis, damorbel, and myself. Since these revaluations were a real surprise to my level of understanding, I thought I'd make sure that the other expects support them as well: 1) Back radiation has a marginal influence on surface temperature due to the effect of convection; 2) Temperature lapse rate in the troposphere is controlled by convection through the vertical pressure gradient, and is not affected much by GH gases; 3) GH gases affect surface temperature only indirectly through controlling the temperature of the emission layer (where most IR radiation escapes to space) in the upper troposphere. Are those correct? I appreciate your input!
    Response: [DB] Tom Curtis has my complete and utter confidence.
  8. Tom Curtis (RE: 559), "the total IR radiation from the atmosphere to space is 199 w/m^2. Of that, 6.4 w/m^2 will have been transported to the atmosphere by thermals, 29.2 would have been absorbed SW radiation, and 29.9 would have been carried into the atmosphere by convection." Let's run these numbers and see if they work: If 40 W/m^2 passes through the atmosphere, that leaves 199 W/m^2 emitted by the atmosphere, yes. 199 W/m^2 - 36.3 W/m^2 (6.4 + 29.9) emitted out to space from thermals and evaporation = 162.7 W/m^2. That leaves an additional 162.7 W/m^2 to be emitted. If you assume 29.2 W/m^2 (37.4%) is emitted directly from the 78 W/m^2 of the energy the atmosphere absorbs from the Sun, that leaves 133.5 W/m^2 that must come from surface emitted IR. It also means 48.8 W/m^2 (out of 78 W/m^2) total is radiated down to the surface. 161 W/m^2 is absorbed directly by the surface. 396 W/m^2 - 133.5 emitted to space = 262.5 W/m^2 emitted down to the surface. 161 W/m^2 + 262.5 W/m^2 + 48.8 W/m^2 + 60.7 W/m^2 = 533 W/m^2 (396 W/m^2 required). These numbers don't work.
  9. Protector (RE: 582), "1) Back radiation has a marginal influence on surface temperature due to the effect of convection;" If by 'back radiation' you mean downward emitted radiation that last originated from the surface emitted, then NO.
  10. RW1 @ 584: I mean total down-welling long-wave radiation ...
  11. Protector (RE: 585), "I mean total down-welling long-wave radiation ..." It has to be separated, because what is determining the GHE and surface temperatures is precisely the amount of surface emitted that is coming back from the atmosphere.
  12. RW1 @583: 1) At the TOA: Incoming Solar Radiation ~= Outgoing Longwave Radiation + Reflected Solar Radiation <=> 341 ~= (40 + (6.4 + 29.2 + 29.9 + 133.4)) + 102 <=> 341 ~= 340.9 Check! 2) At the Surface: Absorbed Solar Radiation + Absorbed Back Radiation ~= Thermals + Evapo/transpiration + Surface Radiation <=> 161 + (10.6 + 48.8 + 50.1 + 222.6) ~= 17 + 80 + 396 <=> 493.1 ~= 493 Check! 3) For the atmosphere: Solar Absorbed by Atmosphere + Thermals + Evapo/transpiration + (Surface Radiation - Atmospheric Window) ~= Back Radiation + OLR emitted by atmosphere including clouds ~= 78 + 17 + 80 + (396 - 40) = (10.6 + 48.8 + 50.1 + 222.6) + (6.4 + 29.2 + 29.9 + 133.4) <=> 531 ~= 531 Check! All units in w/m^2. Slight errors introduced by rounding, and a slight inequality exists because the Earth is accumulating energy. Other than that, it all adds up if you make sure to use the correct figures.
  13. RW1 @ 586: I think it was Tom Curtis, who made a comment earlier that it's difficult and probably physically not sound to try separating IR fluxes like that, because we are dealing here with absorption/re-emission NOT reflection of radiation. From what I've read elsewhere, these two processes are physically quite different ... But maybe the other experts would not agree.
  14. RickG @ 580 "And again, the diagram is about the distribution of energy, not temperature. " Rick in what form can one quantify the "loose" atmospheric energy? As you say, it is not temperature, so how do you know is there...can it be measured? Measured of course, not based on temperature. And by what means is the atmospheric energy stored?
  15. Protector @582, I could have stated (3) better, but it should do for current discussion. More accurately, the GHG concentration determines the altitude of the effective radiation. The need to balance incoming solar radiation with outgoing longwave radiation then determines the temperature at that altitude, which then governs the temperature at the surface by means of the lapse rate. DB, thanks, but I do not have entire confidence in myself. I try though. RW1 @586, until you can identify a physical mechanism whereby CO2 or H2O molecules in the atmosphere can determine the original source of the energy they are emitting, your claim is clearly wrong. Bear in mind that the emitting molecule may not have been the molecule that originally absorbed the energy, but may have gained it after a series of collisional transfers in the atmosphere.
    Response: Your first paragraph of this comment helped me a lot.
  16. Ryan @ 589 Specifically, what is it that you guys don't understand about this diagram? You are trying to make it into something that it is not.
  17. Tom Curtis (RE: 587), "2) At the Surface: Absorbed Solar Radiation + Absorbed Back Radiation ~= Thermals + Evapo/transpiration + Surface Radiation <=> 161 + (10.6 + 48.8 + 50.1 + 222.6) ~= 17 + 80 + 396 <=> 493.1 ~= 493" There is 239 W/m^2 of post albedo coming in, 239 leaving at the top of the atmosphere, and 396 W/m^2 at the surface. Your energy flow calculations do not adhere to this; thus, Conservation of Energy is not being met. You don't seem to understand this, so I'll break it down into a series of separate questions and we'll go from there: 1. Do you agree that 239 W/m^2 of post albedo enters the system and ultimately becomes 396 W/m^2 at the surface? 2. Do you agree that the atmosphere cannot create any energy of its own? 3. Do you agree that 239 W/m^2 is leaving the system at the top of the atmosphere and all of this is radiative? 4. Do you agree that all of the 396 W/m^2 emitted by the surface is radiative? 5. Do you agree that the 396 W/m^2 emitted by the surface is a result of its temperature and nothing else? 6. Do you agree that latent heat and thermals are kinetic energy (non radiative) moved into the atmosphere from the surface? 4. Do you agree that because latent heat and thermals are kinetic, their energy moved into the atmosphere is in addition to or independent of surface emitted radiation?
  18. Tom Curtis @ 590: Yes, this is exactly what I meant as you articulated it in the first paragraph of #590. Also, your reply to RW1 is right on!
  19. Tom Curtis (RE: 587), I should also add: Do you agree that all of the 239 W/m^2 entering the system is radiative? Do you agree that because the atmosphere cannot create any energy of its own, 239 W/m^2 of the 396 W/m^2 at the surface has to come from from the 239 W/m^2 entering at the top of the atmosphere?
  20. Tom Curtis (RE:590), "RW1 @586, until you can identify a physical mechanism whereby CO2 or H2O molecules in the atmosphere can determine the original source of the energy they are emitting, your claim is clearly wrong. Bear in mind that the emitting molecule may not have been the molecule that originally absorbed the energy, but may have gained it after a series of collisional transfers in the atmosphere." I'm not claiming trade offs do not occur between radiative and kinetic energy in the atmosphere - they clearly do, multiple times over I'm sure. The point is the net effect of all the trade offs have to be zero, because all the energy leaving at the top of the atmosphere is radiative and all the energy emitted by the surface is radiative.
  21. RW1: Please continue this discussion. You are doing an excellent job.
  22. RW1 @592: Questions 2, 3, 4, 6 and 7 are all answered "yes". For Question 1 and 5, the answer is "No". 1) The energy absorbed at the surface is the Incoming Solar Radiation absorbed at the Surface (approx 161 w/m^2) plus the Back Radiation absorbed at the surface (approx 333 w/m^2). If you do not include both terms, the result will inevitably show an inequality of energy flows! The energy leaving the surface is the surface radiation plus the convective flux plus the evapo/transpiration flux. Again, if you don't include all three terms, you will inevitably arrive at an inequality. Saying that 239 w/m^2 becomes 396 w/m^2 is to directly assert the non-conservation of energy. Note, your claim that my caclulations do not include the incoming non-reflected solar radiation, the out going longwave radiation, and the surface radiation is simply false. All are included at their appropriate places, as can be easily checked. 5) The surface radiation is a function of temperature and emissivity, which is not 1 at any location, though very close to 1 at most. @594: The incoming and outgoing energies are both radiative. All of the energy comes from the sun, but some of it is shuffled back and forth a bit before it leaves the system. (Total energy from other sources is, I believe, significantly less than 1% of the total, and can be ignored for practical purposes.)
  23. RW1: Please continue this discussion. You are doing an excellent job. One thing to remember in the conservation of energy is that each time a collission occurs, there is a net loss of energy to gravity. This also expends heat energy.
    Response: [DB] Huh? Source, please.
  24. RW1 @595, all energy "emitted" from the surface is radiative only because we do not talk about "emitting" convection, or evapo/transpiration. Not all energy flux from the surface, however, is radiative. In fact, only 80% of it is. And some of the energy flux carried by convection and evapo/transpiration makes its way to space. Do you deny that?
  25. We definitely need that that "GHE violates 1st Law" argeument. So RW1, where is the flaw in equations with SoD's simple model on do-trenberth-and-kiehl-understand-the-first-law-of-thermodynamics?

Prev  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  Next

Post a Comment

Political, off-topic or ad hominem comments will be deleted. Comments Policy...

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.

Link to this page



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2022 John Cook
Home | Translations | About Us | Privacy | Contact Us