Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Donate

Twitter Facebook YouTube Pinterest

RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
Keep me logged in
New? Register here
Forgot your password?

Latest Posts

Archives

Climate Hustle

What does past climate change tell us about global warming?

What the science says...

Select a level... Basic Intermediate

Greenhouse gasses, principally CO2, have controlled most ancient climate changes. This time around humans are the cause, mainly by our CO2 emissions.

Climate Myth...

Climate's changed before
Climate is always changing. We have had ice ages and warmer periods when alligators were found in Spitzbergen. Ice ages have occurred in a hundred thousand year cycle for the last 700 thousand years, and there have been previous periods that appear to have been warmer than the present despite CO2 levels being lower than they are now. More recently, we have had the medieval warm period and the little ice age. (Richard Lindzen)

Greenhouse gasses – mainly CO2, but also methane – were involved in most of the climate changes in Earth’s past. When they were reduced, the global climate became colder. When they were increased, the global climate became warmer. When CO2 levels jumped rapidly, the global warming that resulted was highly disruptive and sometimes caused mass extinctions. Humans today are emitting prodigious quantities of CO2, at a rate faster than even the most destructive climate changes in earth's past.

Abrupt vs slow change.

Life flourished in the Eocene, the Cretaceous and other times of high COin the atmosphere because the greenhouse gasses were in balance with the carbon in the oceans and the weathering of rocks. Life, ocean chemistry, and atmospheric gasses had millions of years to adjust to those levels.

Lush Eocene Arctic 50 million years ago

Lush life in the Arctic during the Eocene, 50 million years ago (original art - Stephen C. Quinn, The American Museum of Natural History, N.Y.C)


But there have been several times in Earth’s past when Earth's temperature jumped abruptly, in much the same way as they are doing today. Those times were caused by large and rapid greenhouse gas emissions, just like humans are causing today.

Those abrupt global warming events were almost always highly destructive for life, causing mass extinctions such as at the end of the PermianTriassic, or even mid-Cambrian periods. The symptoms from those events (a big, rapid jump in global temperatures, rising sea levels, and ocean acidification) are all happening today with human-caused climate change.

So yes, the climate has changed before humans, and in most cases scientists know why. In all cases we see the same association between CO2 levels and global temperatures. And past examples of rapid carbon emissions (just like today) were generally highly destructive to life on Earth.

Basic rebuttal written by howardlee


Update July 2015:

Here is a related lecture-video from Denial101x - Making Sense of Climate Science Denial

Last updated on 6 August 2015 by pattimer. View Archives

Printable Version  |  Offline PDF Version  |  Link to this page

Related Arguments

Comments

Prev  1  2  3  4  5  6  7  8  9  10  11  12  Next

Comments 401 to 450 out of 551:

  1. Here's a theoretical stab in the dark about a biological fingerprint that has adapted to a hotter climate in the past. Dinosaurs. Not sure if this view or even topic has been circulated but I thought I'd share it here considering people are trying to rely on the past to understand our present situation.

    Searched the net to no avail on the subject of dinosaurs and their cooling systems but this doesn't mean it's not out there. Looking over some graphs it was interesting to note that during the times of the dinosaurs it was much hotter on average than it is today. So I asked myself how dinosaurs kept cool to survive and arrived at some intersesting theories that I havn't seen around yet.

    1. Were the vascular bony structures protruding from some dinosaurs originally meant for cooling the dinosaur?

    2. Were dinosaur feathers originally filled with liquid instead of air?

    3. Were feathers on dinosaurs originally meant to act as air-conditioners to cool the dinosaurs instead of flight?

    The reason these questions are on my mind right now is that some people think we can survive dinosaur age global temperatures because life existed during these temperatures. My real questions are how did life at the time adapt to those temperatures?

    Think about this, dry cotton insulates but wet cotton cools a person faster than if they didn't have it on to begin with. What if feathers are the same way? What if when they're hollow with air they maintain heat and help flight for today's climate. But during hotter times they could have been filled with liquid switching them to air conditioning units instead of flying and insulating units.

    Not sure if this is true or even possible but it's really, really bugging me because I can imagine it as a truth and this points to the fact that not even birds will survive going back to those temperatures without them losing their ability to fly.

  2. JCMac1 I don't have my dinosaur books with me today, but I'll try and address some of the points you make:

    Firstly dinosaurs adapted to various climates, but they did so over the course of tends of thousands to millions of years.  It is the rate of climate change that is the problem rather than just the final temperature reached.

    Most dinosaurs, like most modern reptiles are unable ti directly regulate their body temperature (which is one of the reasons that the require so much less food endergy than us mammals - so there is an evolutionary advantage to this).  If heat were a serious problem, dinosaurs would not have evolved to be very large as this increases the volume to surface area ratio, which in turn makes gaining or loosing heat more difficult.

    The bony plates on e.g. stegosaurus were for cooling, ..., and heating.  This is fairly well known.  Apparently the bony plates could be flattened in the morning to raise body to operating temperature after loosing heat overnight, but could also be made vertical and pointed away from the sun, inwhich case they could be used to cool body temperatre.


    I am no aware of any suggestion that dinosar feathers were filled with liquid rather than air (or indeed that birds do this either), or how this would really help with cooling.

    I think it is quite likely that the feathere were for insulation, rather that cooling, helping to keep the body temperature approximately constant, rather than specifically for cooling.


    Life can certainly survive a return to the sort of temperatures seen in the Cretaceous.  The same is unlikely to be true of human civilisation as it exists today.  There are simply too many of us for us to be able to adapt to that sort of change in our agricultural environment.  I'm sure that we as a species would also survive, although there would be great hardship and loss of life along the way (mostly due to starvation).  I personally don't think that makes it a case of "well that's alright then". 

    More seriously, the "skeptics" have invented the concept of CAGW (catastrophic anthropogenic global warming) simply because the know that they can't defend the argument that there is no AGW, so a shift of the goalposts is required.  AGW doesn't need to be catastrophic for it to be worthwile taking steps to mitigate against in in order to maximise the quality of life for the current generation and for the next.

    The problem with the air-conditioner feather theory seems to me that the feathers themselves would insulate the skin from the area at the surface of the feathers that were actually evaporating the water.  It is also not clear why this would be any better than simply sweating through the skin.  Why don't birds, such as ostriches do this?

    Birds will continue to fly, should temperatures reach Cretaceous levels once more, this is demonstrated by the fact that there were flying birds in the cretaceous.

  3. JCMac1 and Dikran Marsupial, you will probably find this article on the thermal regulation of dinosaurs interesting.  It reviews the evidence that dinosaurs maintained fairly stable core body temperatures, but did so not by maintaining a high metabolism (as do birds and mammals), but by the use waste heat from normal muscular action to warm the body, coupled with various tricks to prevent the two rapid loss of heat.  Importantly, heat production by that means is one quarter to one tenth of that in animals with high metabolic rates.  Therefore dinosaurs needed to dispose of  only a quarter or less of the heat of a similarly sized mammal.

    High temperatures are only a potential problem to humans because they restrict the rate at which heat can be disposed of.  If only a quarter of the heat needs to be disposed of, a similarly sized animal can safely live with much higher external temperatures.

    Further, feathers are (from memory) a feature of small dinosaurs only.  There are large dinosaurs among the branch that developed feathers, but no evidence that they retained feathers into adulthood.  Even at high temperatures, for animals of low body mass to retain stable internal temperatures without high metabolisms, they need substantial insulation.  Hence feathers.  

  4. We can't argue about all the evidence shows change is occurring.

    To sugest human intervention in total is not playing a role, the degree an arguement only. The human intervention, in the last 100 years must be recognised.

    The speed of change being the only unknown factor, and on evidence accelaerating.

  5. I'm not an expert on global warming, so I won't attempt to argue with anyone about that. What I am wondering is why you are worried. Since from your article you obviously believe in an old earth ("hundred thousand year cycle", "last 700 thousand years", etc.), then I am assuming you also believe in evolution. If evolution is true, than life must be adaptable enough to survive global warming, or there is no way it would have survived in the past!

  6. Autumnleaves @405, first a technical point.  I do not believe in evolution.  Evolution is not something I put my trust in as though it were a deity.  Rather, I believe that modern living things have evolved from earlier forms through a process of random mutation and natural selection; and that all life currently on Earth share a common ancestor, which lived certainly more than a billion years ago, and possibly more than three billion years ago; and that all life share a first common ancestor that lived around four billion years ago.  These are scientific claims having very little religious implication.

    Second, your objection is specious because it does not take into account the pace at which evolution proceeds.  Fixing a new genotype takes thousands to billions of generations.  If there is little selective advantage, the time taken on average is the inverse of the size of the population (ie, currently 7 billion years for humans).  The greater the selective advantage the shorter the time, but that selective advantage is measured in reduction in population size.  For very rapid evolution, populations must teeter on the edge of extinction.

    That fact creates a major problem when many species must evolved rapidly at once.  Species are massively interdependent on each other in an ecological network.  The near extinction of a few species can create large risks of exinction in their own right.  The near extinction of many species simultaneiously means that very many of them will go extinct. 

    Further, the rapid rate of evolution I am describing depends on the existence of a large reservoir of genetic variability within a species that typically exists.  Rapid evolution reduces this variability.  After it is exhausted, evolution can proceed no faster than the rate of introduction of new, beneficial genes by random mutation, a much slower process.  Given that following a period of very large selection pressures for very many species, species will need to adapt not just to the new environmental conditions but to the new ecological conditions, that means recovery from such large selection pressures will be very slow and extinctions consequently more likely.  Indeed, it is worse than that.  Humans have placed other organisms under massive selection pressures due to ecological changes over the last century, which will have already greatly reduced genetic variability in most species, limiting their ability for further adaption.

    Finally, the impact of BAU global warming mirrors in impacts, but exceeds in pace, that of the End Permian mass extinction which saw the exinction of 90% of marine Genera.  We know, therefore, that living things cannot, in general adapt to the current rate of environmental change is sustained over the next 100 plus years.  The question among ecologists, SFAIK, is no longer whether or not the comming centuries will mark one of the greatest mass extinctions the Earth as seen, but only whether it will be comparable to that which killed of the dinosaurs, the Permian mass extinction, or something worse. 

  7. Autumnleaves's comment brings to mind Charles Darwin's observation that "ignorance more frequently begets confidence than does knowledge".

    The response by Tom Curtis was outstanding.

  8. Interesting website. A lot more data that most sites which just say something and offer no evidence to back it up.

     

    That said, I'm still somewhat skeptical of the overarching theory.

    Response:

    [TD] Your comment violates the Skeptical Science comment policy, by being devoid of substance and therefore being sloganeering.  Future content-free comments will be deleted without warning.  Please carefully read the original post above this comment thread, and if you want to complain about lack of evidence, then describe specifically what of that evidence in that post you believe is inadequate, and why.

  9. wcgulick @408, we can hardly help you with so vague a criticism.  I suggest that you start reading the basics, eg, here or here, and raise any specific concerns you have with that aspect the theory on those pages.  If you have no concerns at that level, we can then move on to other relevant pages and discuss them there. 

  10. Tom Curtis @ 409:

    What I mean is that I still see serious problems with "stating as a fact" that the planet is warming due to human activity. 

    To wit:

    The people doing this reseach are working with an incomplete data set. This is the largest kinetics problem anyone has ever tried to solve and it's not solveable unless you know the inputs and outputs of the overall system, which we don't.

    Related to this problem is a second one, where people are making a series of assumptions based on said incomplete data set. The real cold (no pun intended), hard truth is that no one really knows if things like water vapor in the atmosphere, which is present at levels orders of magnitude greater than carbon dioxide, create a positive or negative feedback loop or any feedback loop at all. It could produce a slow (or rapid) occilation. As I said, no one knows. 

    On top of that, with a system as complex as the climate, data on prior occurances is not necessarily predicitive of future occurances. Simply put, we don't know exactly what was happening to all inputs and outputs when this occured. 

    On top of that there is no way that anyone can argue in a situation like this that the researchers don't bring their own biases to their research. This isn't something you can prove or disprove rapidly in a chemistry lab, in fact there are no experiments being done at all (so it's not science, it's research). Therefore, unlike real hard science where experiments can prove or disprove a hypthoisis, we have no way of controlling for biases that may be introduced by the researchers themselves. 

    Long story short, my real issue here is that the data set is incomplete and there is absoultely no way to know how all of the variables (including researcher bias) are acting at any given time in the past. Therefore, any conclusions we draw from the data are, IMHO, unreliable at best. 

    Response:

    [TD] You need to post comments on relevant threads.  You must read the original post for the relevant thread, and if you comment, address that original post.  Many posts have Basic, Intermediate, and Advanced tabbed panes; read all three before commenting.

    For your "incomplete data" claim, see "Are Surface Temperature Records Reliable," among other posts.

    For water vapor, see "Explaining How the Water Vapor Greenhouse Effect Works."

    Projecting future climate is not done merely by extrapolating from past trends; climate models are physical models, not statistical ones.  In any case, the proof is in the pudding.  See "How Reliable Are Climate Models?"  That same post addresses your incorrect and inappropriate claim that researchers' biases cannot be controlled; the empirical data have and continue to validate the theoretical projections that have been made for over 150 years.

    All your claims are incorrect.  You are most welcome to make claims on Skeptical Science as long as you do so on the relevant threads, as long as you specifically address the original posts of those threads, and you respond to other commenters with specific data rather than merely your opinions.

  11. wcgulick @410, I'm sorry, you are simply boring and arrogant.  Arrogant because you assume that because you certainly do not know something, scientists do not know it either.  Boring because your position if adopted consistently would cause you to reject all science, not merely climate science.  There is no scientific subject about which we know everything.  Never-the-less there are many scientific subjects about which we know much, including climate science.  I am more than willing to work through the details of climate science with those who are willing to discuss it rationally.  I am, however, totally disinclined to waste time discussing it with those who hold their ignorance to them as a shield against learning.

  12. Explain, precisely, how the temperatures are measured.  I assume land-based temperatures have fixed locations.  If so, how many are there, both in the United States and worldwide.  How are temperatures obtained over the seas? 

  13. Google didn't work?

    http://en.wikipedia.org/wiki/Weather_buoy

  14. Also, for future reference, after doing a basic level of Googling yourself, it's "Could someone please <request>?" or "I need help understanding <thing> and would really appreciate..."

  15. schema, you can find general information on some of the methods of measuring global temperature anomalies here. Note that the 'fixed location' land-based temperature measurements you cite, and ocean buoy measurements for sea temperatures, have also been confirmed by weather balloon and satellite measurements. Numerous temperature proxies (e.g. tree rings, coral growth layers, ice cores, ocean sediment cores, et cetera) also match the various forms of direct measurement.

  16. It is amazing that so many experts think they know what happened millions, billions of years ago on the earth!  Let alone that the techonlogy that is used to record the earth's temperature has only existed since the latter 1800s.  Add to it in the 60s and 70s we endured a global cooling scare!  When you take and issue and use it for an agenda you will you scare tactics!  But in the end we dont even use the data attained during the 100 years of numbers collected but a brief 30 year period from 1950-1980 as our "average"!  Yet we all know that this is the period of global cooling!  Add to the alarmism of the 30/4,500,000,000,000 and science thinks it can answer every question with such a small sample, amazing!  But I digress, let us take this one little degree over the past 100 years... now let us remove the co2 created by the mere existance of man and the population explosion.... next let us remove the co2 produced by the livestock explosion needed to feed the world.... let us remove the co2 from any additional solar activities.... let us remove the co2 that is created from all sources apart from fossil fuel usage!  Next let us go to the remainder and break it down between countries in comparision to their production of co2 to run their economies... So now we in the usa are responsible for a fraction of one tenth of one degree!  Let us now see what we can do to affec that number but also remembering that as we punish those who produce co2 one of two things will happen.  They will increase the price of their goods or services and in the end punish the poorest among us or second they will move thier companies overseas where they will have fewer regulations and be able to increase production and co2 thereby eliminating any potential positives by attacking them in the first place... hmmmmmm!

    Response:

    [TD] Only your first two sentences are on the topic of this post.  If you want to discuss the topics of the other sentences, post them on the appropriate threads.  In each of those original posts, after you read the Basic tabbed pane, read the Intermediate and then the Advanced tabbed panes, if they exist:

     

  17. Wondering if there are better studies on the idea that CO2 preceded a temperature rise. Ex. More than one warming event. 

    Looking at that abstract are there any studies that support the idea of cause? There is a lot of correlation here but no causality.

    Also is there any additional data on the role on methane in the past events and its involvment in warming and extinction related activity?

    Response:

    [TD] In all of the following Skeptical Science posts, after you read the Basic tabbed pane, read the Intermediate and then Advanced if they exist:

    And "It's Methane."

    The Search field at the top left of every page is useful.

  18. ZMathblasterZ, the first and foremost thing to keep in mind is that CO2 absorbs/emits at various pressure-broadened bands within the thermal infrared range, the range within which the sun-warmed Earth emits.  The emission is in random direction, effectively half up half down.  The process lengthens--in space and time--the path of energy from surface to space.

    Downwelling thermal radiation has been directly measured from the surface.

    So an increase in CO2 is going to result in an increase in energy storage, regardless of the situation.  Beyond that, though, there are interesting questions about the timing of the CO2 amplification effect in the process of the Pleistocene glacial cycles.

  19. Re. [3], [5]: Hoyt's argument is flawed on a very basic level. It goes like this: "Water vapour has a atmospheric life time of about a week. So if there is more water vapor in the atmosphere, we must somehow lift that water from the ground up into the atmosphere every week. That requires energy, which must come from somewhere. There is not enough energy to do that. So water vapor cannot increase as much as claimed". What he ignores is the very simple fact that that energy required to lift the water is not lost to the system. Whenever water vapor leaves the atmosphere (via precipitation), those raindrops and snow flakes and hailstones fall back to the ground, and their potential energy is converted back to kinetic energy, and ultimately heat.

  20. Evidence about Earth's climate in the last few million years show rapid oscillations of the climate started about 3 million years ago when CO2 concentrations dropped from above today's level to about half today's level.
    http://upload.wikimedia.org/wikipedia/commons/1/1b/65_Myr_Climate_Change.png
    Milankovitch cycles and variations in solar activity can not alone account for these rapid changes because they have existed long before the rapid changes started. Variations of CO2 concentrations in the range of 100ppm can not explain it either, because such variations have also been present long before the period of rapid climatic changes started.
    It seems the only difference between the past 3 million year period of rapid climatic changes and relatively more stable climate before it is the average CO2 level. During the stable climate it was above today's level and during the unstable climate it was about half today's level.
    Is it possible that low CO2 levels lead to unstable climates due to the reduced green-house effect and therefore wouldn't we be shooting ourselves in the foot by trying to reduce the CO2 level to preindustrial levels and therefore risking a swing to a colder climate which would have a much more dire consequences than even the direst IPCC predictions?

    Response:

    [TD] I hotlinked your link.  In future please do that yourself.

  21. skeptic1223, I believe you are mistaking the higher temporal resolution of the temperature measurements the closer to recent your linked graph shows, for more rapid changes in temperature.

  22. @420, Who said we were trying to reduce CO2 to preindustrial levels?

    Sure it's an interesting thought that 'low CO2 levels' could lead to unstable climates, I'll grant you that, but it's irrelevant.

  23. skeptic1223, for example see Figure 5 in Zhang et al. (2013).  Note the circles that are the actual datapoints, and note how far apart they are in various time periods.

  24. @421, Surely the time resolution for more recent periods is better than for older ones, however statistics and probability theory tell us that even sparser sampling would still show large variations (the probability of the sparser samples all hitting similar values is miniscule). I hope you would agree that the trend in increasing climate instability in the last 3-5 million years is quite obvious
    LINK
    the graph is from wikipedia
    en.wikipedia.org/wiki/Geologic_temperature_record#
    Also, the current ice age epoch started only about 3 million years ago and the difference in temperatures between glacial and interglacial periods has been quite significant, for 260 million years before that there were no ice ages and CO2 levels were relatively high compared to today's
    LINK

    again from wikipedia
    en.wikipedia.org/wiki/Carbon_dioxide_in_Earth's_atmosphere#

    Response:

    [RH] Shortened links that were breaking page format.

  25. @422 If we reduce the emissions to preindustrial levels eventually the concentration would follow too. Also, we don't know exactly what is the threshold of CO2 concentration that leads to unstable climate. Before the current ice age epoch started CO2 levels were above today's.

    The climate instability is not irrelevant, I think it is actually the most relevant thing. Unstable climates are unpredictable and swings from interglacials to glacials can happen quite rapidly in a matter of a few decades, for example

    en.wikipedia.org/wiki/Younger_Dryas#

    So, to summarize, in an unstable climate we wouldn't be able to tell if a new ice age is waiting for us just a few decades down the road, we wouldn't be able to prepare for it, and an ice age would have absolutely catastrophic consequences for us. The catastrophic consequences of rapid climate changes has actually been discussed by skepticalscience

    www.skepticalscience.com/Rapid-climate-change-deadlier-than-asteroid-impacts.html

     

  26. @423, The data points in this graph seem to be quite equally spaced and the trend of climate instability increase is still quite obvious I think

    LINK

    from wikipedia

    en.wikipedia.org/wiki/Geologic_temperature_record

     

    Response:

    [RH] Shortened link

  27. skeptic123 @425:

    1)  The long term global temperature trend over the last 8000 years has been flat, or slightly downward:

    From this we would expect the CO2 concentration to have declined by about 10 ppmv from the early holocene levels of 260 ppmv of CO2.  Instead, it rose to 280pmmv - most probably due to preindustrial activities of humans:

    Arguably, even that rise was sufficient to prevent the Earth declining into a new glacial. Ergo your hypothesis is getting well ahead of the evidence even there.

    2)  More importantly, while restoration of zero net emissions will eventually result in CO2 concentrations declining to pre-industrial levels, it is likely to take much more than 10,000 years to do so:

    Indeed, even if we were to return to zero net emissions prior to 2020, temperatures would still be elevated above preindustrial levels by a degree Centigrade 10,000 years from now, assuming no major alteration in natural forcings.  Consequently concerns about targetting zero emissions are entirely misplaced.  (They may be valid concerns for aggressive CO2 sequestration programs that aim at negative net emissions.)

    3)  The ice core record is very clear that the slide into a glacial occurs, not over decades but over millenium.  Even were CO2 levels low enough for that to be a genuine risk, there would still be ample time to react to such an event by reinitiating the consumption of fossil fuels to raise CO2 levels by the 20-40 ppmv necessary to prevent the onset of the glacial.  So, even if you were not ignoring relevant facts (1 and 2 above), preventing anthropogenic global warming would still remain the priority issue, with concerns about the ideal post mitigation CO2 concentration being a third or fourth order issue that can be left to be dealt with several decades or even centuries from now, when our understanding of the science will also be that much better.

  28. @427
    About 3) "The return to the cold conditions of the Younger Dryas from the incipient inter-glacial warming 13,000 years ago took place within a few decades or less (Alley et al., 1993)."

    www.ipcc.ch/ipccreports/tar/wg1/074.htm

    "Over the last 400,000 years the Earth's climate has been unstable, with very significant temperature changes, going from a warm climate to an ice age in as rapidly as a few decades."

    www.grida.no/publications/vg/climate/page/3057.aspx

    While the overall slide into a full-blown ice age indeed could take a millenium, it does not happen smoothly but in a step-wise manner of a few decades with some steps spanning a few degrees of temperature drop. I am also highly suspicious that an increase of 20-40ppm CO2 could prevent the onset of an ice age, your graph from 1) is quite clear that a 20ppm increase had little effect.

    About 2) The estimates in that paper might be a bit too pessimistic, who would have guessed that plants would start eating more CO2 as concentration increased

    www.natureworldnews.com/articles/9576/20141014/global-warming-plants-absorbing-more-co2-than-we-thought.htm
    Also, past CO2 concentrations seem to show that levels could fall as quickly as in a few centuries

     About 1) The last 8000 years have indeed been quite uneventful, luckily for us, however it depends how much smoothing one applies to the data, for example

    An it should actually be worrying that the overall trend was still downwards despite the 20ppm CO2 increase.

    Finally, I would have been really worried if we were currently at preindustrial levels of CO2, but even at 400ppm we are still below the level when the ice ages started and with the current trend in solar activity and orbital cycles pointing downwards it might take just one major volcanic eruption to trigger the positive feedbacks.

    Response:

    [RH] The David Lappi graph should be disregarded altogether for the mere fact that he states that GISP2 runs up to the year 2000. This is factually incorrect. The "years before present" represented in the GISP2 data uses 1950 to represent "present." Thus the data only runs up to 1855 (95 years before present).

  29. skeptic123:  Sorry, my mentioning of the spacing of data points obscured rather than clarified my point about temporal resolution of temperature records. The measurement techniques average across years, decades, centuries, millennia,....  For example, sediments and snow/ice compress over time so the years are not as physically separated, so a sample will be an average across a larger span of time, which will smooth across variations in temperature.  That lack of resolution is reflected in the sparcity of data points the farther back in time you look in graphs, because the placement of a datapoint in time is done at the midpoint of the estimated range of times for that temperature.

  30. skeptic123, further to Tom Curtis's points, see the post "Are We Heading Into a New Ice Age," the Intermediate version.  Read the Archer 2005 paper referenced there. 

  31. On the general topic of climate variability, Science of Doom has a series of interesting posts called Ghosts of Climates Past.

  32. @429, Surely there is some averaging in the ice cores resulting from compaction, and I am not an ice core expert, so I don't really know how much it is, but a quick search on the web shows it might not be that much

    This 19 cm long of GISP2 ice core from 1855 m depth shows annual layers in the ice. This section contains 11 annual layers with summer layers (arrowed) sandwiched between darker winter layers. From the US National Oceanic and Atmospheric Administration

    www.antarcticglaciers.org/glaciers-and-climate/ice-cores/ice-core-basics/

    Besides, the fact that the ice ages started only about 3 million years ago still remains.

  33. @430, I am not saying that an ice age is imminent, what I am saying is that with an unstable climate we can not really tell when an ice age would come. Surely ice ages have in general been triggered by drops in solar activity and orbital changes, but there are other events too, e.g. major volcanic eruptions, which are even more unpredictable than solar activity. In the past there have been events when glaciation occured unexpectedly and within decades, not centuries, see my post 428. Also, we do not really know the exact CO2 level vs solar irradiation drop that would prevent an ice age from happening. The author in Archer 2005 himself admits that the models are very sensitive to how the parameters are set and this is to be expected since strong positive feedbacks are involved. Finally, the current slow down (if not reversal) of the warming and the last few winters of heavy snow are not very reassuring.

  34. @431,"The huge changes in past climate demonstrate the sensitivity nature of our climate. Small changes in solar output and minor variations in the distribution of solar energy across seasons (from minor changes in the earth’s orbit) have created climate changes that would be catastrophic today. Climate models can explain these past changes. And if we compare the radiative forcing from anthropogenic CO2 with those minor variations we see what incredible danger we have created for our planet."

    I agree about all of the above except the last sentence. The thing is that in an interglacial period such as today, one of the major warming feed-backs is not present, ice sheets are small enough so that an increase in temperature would not decrease the albedo noticeably. The opposite, however, is much stronger, a relatively small drop in temperature may increase the ice sheets and snow cover sufficiently to trigger run-away albedo increase.

  35. skeptic1223, you are cherry picking quotes to support your intuition, and explicitly rejecting the data-and-model-based conclusions of scientists who have carefully studied glaciations and backed up their conclusions with evidence.  Ari has compiled a bibliography of just some of the many other papers explaining that and why we have delayed the next glaciation for many tens of thousands of years.

  36. @434, You make some intelligent points yet I can't help but feel you conveniently neglect rates of change aka the time factor.

  37. By the way, the link to the Archer 2005 paper (Archer & Ganopolski, 2005, "A Moveable Trigger...") is stale in the "Are We Heading Into a New Ice Age" post.  The full text of the paper is available elsewhere now.

  38. skeptic1223, your worry about climate instability is backward.  The past 10,000 years have been unusually stable compared to at least the previous 40,000 years, allowing the rise of agriculture (see also here and later here) and civilization.  Humans now have violently spun a major control knob of the climate all the way to 11

  39. Ari also has a short but older-than-his-excellent-bibliography article "Rising Carbon Dioxide Concentration Stops the Glacial/Interglacial Cycle."

  40. @435, I am not saying that abrupt glaciation is the norm, what I am saying is that abrupt glaciation is possible. The bibliography you mentioned discusses the normal process and relies heavily on models. Some events such as solar activity or volcanic eruptions can not be modelled reliably. As for the cherry picking, well, I don't have the actual numbers of the temperature measurements, and unfortunately the publically available graphs don't have sufficient time resolution to draw a positive conclusion, so I have to rely on other people who do have the actual numbers, and I thought that such respected institutions as the IPCC and GRIDA would be trusted with what they say.

    @437, yes, I googled it and found it also here

    www.odlt.org/dcd/docs/archer.2005.trigger.pdf

     

  41. @438, about the control knob, the past violent climate changes are due to positive feed-back effects, forcings only trigger the feed-back process. The major positive feed-back effect is the albedo acting through the area of ice sheets and snow cover. In an interglacial period the albedo is mostly a cooling positive feed-back due to the small starting size of the ice/snow cover, while in a glacial period it is mostly a warming positive feed-back due to the large area of ice/snow cover. So, unless there is some other major warming positive feed-back effect today, the current climate is more prone to a swing to cold than a swing to hot. It is of course entirely possible and even probable to continue gradually warming with the increase of CO2 if there is no cooling event to trigger the albedo feed-back. However, my worry is if there is a cooling event that we can not model reliably and the albedo feed-back gets triggered. So, just to be on the safe side it might be a good idea to increase CO2 by another 1-200 ppm to get to pre-ice ages epoch levels.

  42. skeptic1223, you are correct that at any moment a Vogon constructor fleet might accidentally or haphazardly or maliciously destroy the Sun, thereby inducing a glaciation.  But otherwise, solar changes within the empirically and modelled very well supported range of probabilities will barely and temporarily make a dent in the warming that our increased CO2 level is causing and will continue to cause.

  43. skeptic1223, when you say things like "Finally, the current slow down (if not reversal) of the warming and the last few winters of heavy snow are not very reassuring," strongly suggest a lack of understanding in the basics.

    There has been no slowdown in  the rate of energy accumulating in the climate system.  There has been a slowdown in the rate of surface warming over the last 8-10 years.  If you're having a hard time understanding this, there are plenty of threads to help.

    Why is heavy snow in some parts of the world at certain times of the year an indication that the climate system is cooling?   It is, rather, an indicator of warming, as warming puts more precipitable water vapor (pp. 201) into the atmosphere.  

  44. skeptic1223, amazingly, you wrote regarding ice and snow albedo: "unless there is some other major warming positive feed-back effect today."  Let's see... how about water vapor?!  You really should learn the basics.  I suggest you enroll (sorry, Aussies--"enrol") in the Making Sense of the Climate Science Denial course.

  45. @439, "Rising Carbon Dioxide Concentration Stops the Glacial/Interglacial Cycle." - that's exactly what I mean too, it seems we only disagree in the safe level of CO2. As I said in 441, just to be on the safe side it might be a good idea to increase CO2 by another 1-200 ppm to get to pre-ice ages epoch levels.

  46. skeptic1223, your wild guessing about the possible catastrophic cooling effect of volcanic eruptions is, like your wild guessing about solar-caused cooling, wildly out of scale.  One way to start replacing your uninformed intuition with data is by reading John Mason's series.

  47. @443, I haven't seen any conclusive evidence about the state of the surface temperatures for the last 15 years (that's why I put it only as a feeling and not a statement), if the mechanism is so obvious why it wasn't included in the climate models and they failed to predict it?
    About the precipitable water vapor I could of course counterargue with the drought in California and my child memories of heavily snowy winters during the 1970s dip, but again there isn't conclusive evidence in either direction, so I've put it just as a feeling and not a statement.

    Response:

    [JH] Your "feelings" carry no weight on this website. Please cease and desist from posting them. 

  48. skeptic1223, just because glacial periods suck bad, that doesn't mean that periods of rapid warming are good.  Keep in mind that atmospheric CO2 hasn't risen this quickly in at least 300 million years, and arguably ever.  That could easily mean that the climate system is now warming at an unprecedented rate.  Remember that life has reached equilibrium with Holocene conditions, and more generally with Pleistocene conditions.  A rapid change to Carboniferous conditions (600+ppm) will put the current biosphere up against the wall.  Because the climate system is comprehensively integrated, it's not as easy as just popping up the carb-o-stat to 600ppm and popping the cap off a beer: "No problem, mate!  No more glacial periods!  Let's kick it!"  The problems that result from extremely rapid warming may make questions of glacial periods irrelevant.

  49. Skeptic1223, click on the links I provided.  Try not to assume that increased global water vapor means more rain for everyone.  I said "precipitation intensity" not "more widespread precipitation."  You might check out the observed and modeled expansion of the Hadley circulation as well.

    Why wasn't the "pause" in surface temp "predicted" by climate models?  Because climate models aren't designed to project sub-decadal trends.  The temporal resolution is getting better, and the "pause" has inspired focused science that's been quite fruitful, but the bald fact of the matter--and something that fake skeptics aren't willing to get--is that climate modeling isn't designed for accuracy over the short-term.  Do you understand why that might be?  


  50. @444, so, did you all have to pass that course first :)
    There is a lot of controversy regarding water vapor, there is the strong green-house effect, but there are also the clouds which reflect sunlight. Also, water vapor is mainly present in the low troposphere where the greenhouse effect is already saturated, above 10km there is virtually no water vapor, that's why there are no clouds above when flying with a passenger jet. And according to skepticalscience "It is the change in what happens at the top of the atmosphere that matters, not what happens down here near the surface."

    www.skepticalscience.com/saturated-co2-effect.htm

Prev  1  2  3  4  5  6  7  8  9  10  11  12  Next

Post a Comment

Political, off-topic or ad hominem comments will be deleted. Comments Policy...

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.

Link to this page



Get It Here or via iBooks.


The Consensus Project Website

TEXTBOOK

THE ESCALATOR

(free to republish)

THE DEBUNKING HANDBOOK

BOOK NOW AVAILABLE

The Scientific Guide to
Global Warming Skepticism

Smartphone Apps

iPhone
Android
Nokia

© Copyright 2017 John Cook
Home | Links | Translations | About Us | Contact Us