Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

New paper shows how sensitive the ocean biosystem is to climate change

Posted on 10 April 2015 by John Abraham

Changes to the climate have had major impacts on the oceans and the biological systems that live there. A new study sheds more light on how fast these systems respond to changes. What the authors find is that short term climate changes can require 1,000 years for recovery. This means the current harm caused to the deep oceans by the changing climate will last for many centuries to come.

The new study, published in the Proceedings of the National Academy of Sciences by Dr. Sarah Moffitt and her colleagues is novel for a number of reasons. The researchers took core samples from ocean floor regions off the coast of California. The location was chosen in part because of the exceptional synchrony between sediment archives from offshore California and ice core records from the Greenland Ice sheet.

Dr. Sarah Moffitt.  Photo credit: Wayne Freedman Dr. Sarah Moffitt. Photo credit: Wayne Freedman

The authors’ method was novel because they sampled many different types of creatures, not merely the single-celled organisms that are most commonly studied. In fact, the authors included Mollusca, Echinodermata, Arthropods, and Annelida samples (approximately 5,000 fossils). There was major “turnover” in these animals with only small changes to oxygen levels.

Using the ocean sediment core, the authors were able to travel back in time to the last deglaciation. They connected cooling and warming events to increases and decreases in the oxygen contained within the waters. Past events of abrupt warming, which occurred in decades to centuries and were accompanied by subsurface oxygen loss, significantly impacted the types and numbers of animals found within the sediments. Recovery from this abrupt, climate-forced disturbance can take 1,000 years.

Among the changes documented are expansions and intensification of oxygen poor regions. These regions, called “Oxygen Minimum Zones” get larger when the oceans warm. As these oxygen poor zones get larger, there is a predominance of animals that thrive in low-oxygen environments. Animals that need higher levels of oxygen suffer and die off.

It isn’t just that one ecosystem replaces another. Rather, a rich diversity of oxygen-loving biology is replaced by a much smaller diversity of low-population low-oxygen biology, and in particular single-celled organisms. In short, the ocean floor changes from a rainforest to a desert.

I asked Dr. Moffitt about her research and she said,

Click here to read the rest

0 0

Printable Version  |  Link to this page

Comments

There have been no comments posted yet.

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us