Recent Comments
Prev 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 Next
Comments 102351 to 102400:
-
michael sweet at 22:25 PM on 5 December 2010Renewable Baseload Energy
Quokka, The pro nuclear reference that scaddenp cites in 355 says that while nuclear can adjust its output, nuclear is not economically competitive unless they run the plant at high power output. This is because of the very high capital costs that nuclear has. To recover the capital cost they run at 100% as much as possible. Since they are pro nuclear, I presume they are accurate. I find your strongly worded statements "Your assertion that nuclear power plants do not and cannot load follow is prevalent myth that is not true" and "I must confess to be utterly bamboozled by this argument" to be a very strong turn off for the nuclear argument. If nuclear is so good, why do the pronuclear people here have to exagerate their position so much? When I see some statements that I know are exagerations I discount the rest of your argument. We need to consider all our options to get out of the mess we are in. It is necessary to consider the pros and cons of all possibilities to find the best solution. I noticed in scaddenp's pronuclear reference that wind was the lowest cost source of electricity in the USA. The USA has much beter wind resources than Australia, there is a lot of wind in the Great Plains. Previous posts on this blog refer to wind farms in Australia that are only 400 km or less apart having similar wind patterns. In the USA, Texas and North Dakota are over 1200 km apart and have mostly separate wind patterns. -
Rob Painting at 22:03 PM on 5 December 2010Ocean acidification isn't serious
That seems to say that CO2 is required for photosynthesis. Yes, same for "sea plants" as it is for land based ones. The carbon in the CO2 molecule provides the basis for carbohydrates which are synthesized using energy from the sun. -
TimTheToolMan at 21:43 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
"David, as I understand it, people in denial (of any sort) grasp for anything that will allow them to keep their illusion that "everything's going to be all right". " Compare this to your own view which is that an unknown but dominant effect in the climate cant and wont help despite whatever becomes known about it in the future. This result is born from yet another model. Its made to sound definititive which is little more than a LOL. -
Rob Painting at 21:31 PM on 5 December 2010Ocean acidification isn't serious
Most references I see on coral bleaching list increased temperature as the main stress likely to cause it. Reading the wiki on Coral bleaching seems to offer a contradiction Not really. Coral reef bleaching can be induced by a number of conditions- as listed in the Wiki page. The bleaching events I have previously linked to are truly massive in scale and correspond with anomalously warm, and sustained, sea surface temperatures. Hence the ability to predict these large bleaching events in advance. If you pore over the peer-reviewed literature you will see a lot of debate about the cause in earlier years, however as global warming, and warming ocean temperatures have continued, the evidence identifying warming SST's has strengthened. Try reading the first link I provided at @ 19. The lead author, Eakin, has published a lot of work on corals, and the study gives a good overview. -
actually thoughtful at 20:45 PM on 5 December 2010The human fingerprint in the seasons
Phil @ 68, I think I completely understand HR's point - which is why I can show the fallacy of the argument. Read my comment again - I point out that you DON'T need TSI to understand the current post, but it does, INDEPENDENTLY verify that TSI hasn't increased. As to your closing paragraph (perhaps I don't understand your point 100%) - the visual picture that paints is each excited water vapor molecule (heat) interviewing the molecule that bumped into it: "Excuse me - are you excited from TSI?" "Why yes, how did you know?!" [excited molecule jumps up and down, exhibits clear additional excitement] OR "Excuse me - are you excited by a glancing blow from CO2?" "Why yes, how did you know?!" [excited molecule visibly slumps, clearly showing less exitement] Then, of course, your last sentence seems to say the opposite. Can you clarify what you are trying to say? -
cjshaker at 20:43 PM on 5 December 2010Ocean acidification isn't serious
f Found some more current research on wind born problems for coral reefs, from a Government source http://www.usgs.gov/newsroom/article.asp?ID=1970&from=news_side "African Dust Poses Threat to Coral Reefs and Human Health: Contaminants carried with African dust to the Caribbean and the Americas may be a threat to marine organisms and humans, according to preliminary results of a new study by researchers with the U.S. Geological Survey, Oregon State University, and the University of the West Indies. The scientists compared contaminant levels in sources of African dust and downwind regions. Of the more than 100 persistent organic pollutants screened for in the samples, including banned and common-use pesticides, six pesticides (chlorpyrifos, dacthal, endosulfans, hexachlorobenzene, chlordane, and trifluralin) were detected in samples from all sites. Concentrations were significantly higher in Mali. DDE (a breakdown product of DDT) was also identified in Mali, U.S. Virgin Islands, and Trinidad samples. To date, DDT and carcinogenic dioxins and furans have been detected only in samples from Mali. Many of the identified contaminants are thought to be toxic to corals and other marine organisms and can interfere with reproduction, fertilization, or immune function. For more information, contact Virginia Garrison at 727-803-8747, ext. 3061 or ginger_garrison@usgs.gov." "The Origin of Aspergillus Sydowii, a Common Disease of Caribbean Corals: Coral reefs are increasingly suffering outbreaks of disease, causing dramatic declines in population abundance and diversity. One of the best-characterized coral diseases is aspergillosis, caused by the fungus Aspergillus sydowii. A. sydowii is a globally distributed fungus commonly found in soil, so its presence in marine systems raises questions about its origin. By using microsatellite markers, researchers analyzed the population structure of A. sydowii from diseased sea fans, diseased humans and environmental sources worldwide. The results indicate that A. sydowii forms a single global population, with low to moderate genetic differences between the disease found in sea fans and the same fungus from environmental sources. Past researchers have suggested that A. sydowii originates from African dust blown into the Caribbean, and have identified Aspergillus from dust samples, although often only to the genus level. To test this, researchers isolated fungi from dust samples collected in Mali and St. Croix. Although a diversity of fungi was documented from African dust, including seven species of Aspergillus, none of the samples contained A. sydowii. Taken in conjunction with recent molecular evidence suggesting lack of a single point source of the fungus, this research suggests that there are likely multiple sources and introductions of this pathogen into marine systems. For more information contact Krystal Rypien at 858-534-3196, krypien@ucsd.edu or Virginia Garrison at 727-803-8747, ext. 3061 or ginger_garrison@usgs.gov." "The Emperor Has No Coral? Results of research on coral reefs in the Florida Keys reef challenge the highly popular notion that present declines in reefs in Florida and elsewhere are related to human activities. High-resolution sub-bottom profiling, reef drilling, and mapping of benthic habitats along the reef tract present a paradox in coral growth patterns: reefs that are dead or dying -- and therefore not building -- outnumber live and building reefs about 100 to 1. Yet growth rates of all common coral reef species should have kept pace with the well-documented rise in sea level over the past 6,000 years. Why did so few reefs keep pace or build up with the rise in the present sea level? Geological history may provide an answer: two 500-year periods of non-growth of coral reefs occurred in the region 4.5 thousand years ago and 3,000 years ago. These periods of non-growth indicate times of environmental crises that predated modern human presence in the Florida Keys. The present period of rapid coral demise has spanned only about 30 years. For more information, contact Eugene Shinn at 727-533-1158, eshinn@marine.usf.edu or Barbara Lidz at 727-803-8747, ext. 3031, blidz@usgs.gov." Chris Shaker -
David Horton at 20:27 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
I didn't think it could be that simple, thought I was missing something. These guys really believe that cloud cover will carry us through until fossil fuels run out? And then carry us through a lot longer until CO2 levels fall (how?). You have got to be joking, is the obvious comment, but sadly I know they are not. -
cjshaker at 20:03 PM on 5 December 2010Ocean acidification isn't serious
Most references I see on coral bleaching list increased temperature as the main stress likely to cause it. Reading the wiki on Coral bleaching seems to offer a contradiction http://en.wikipedia.org/wiki/Coral_bleaching It says, "Bleaching occurs when the conditions necessary to sustain the coral's zooxanthellae cannot be maintained.[4] Any environmental trigger that affects the coral's ability to supply the zooxanthellae with nutrients for photosynthesis (carbon dioxide, ammonium) will lead to the zooxanthellae's expulsion.". That seems to say that CO2 is required for photosynthesis. Yet, they also state, "Coral bleaching is a vivid sign of corals responding to stress, which can be induced by any of: increased (most commonly), or reduced water temperatures[5][6] increased solar irradiance (photosynthetically active radiation and ultraviolet band light)[7] changes in water chemistry (in particular acidification)[8][9] starvation caused by a decline in zooplankton[10] increased sedimentation (due to silt runoff) pathogen infections changes in salinity wind[6] low tide air exposure[6] cyanide fishing" How much stock am I supposed to put in the 'acidification' mention when CO2 appears to be essential for coral photosynthesis? Chris Shaker -
cjshaker at 19:44 PM on 5 December 2010Ocean acidification isn't serious
Rob: I searched for, found, and read that paper after watching an educational TV program that covered the fungus, possibly a Nova? Chris Shaker -
Rob Painting at 19:34 PM on 5 December 2010Ocean acidification isn't serious
Chris , I find it insightful to actually read the studies linked to. The authors are proposing a hypothesis (back in 2000). They claim that two bleaching events in the Caribbean (1983/1987) coincide with increases in dust transport into the region. They lay the foundations for their hypothesis, that's the extent of it. In those two years (1983/1987) anomalously warm waters occurred too. Furthermore 1988 was a year of Caribbean coral bleaching and according the graph in Shinn 2000, this was a year of very low dust import into the region. In the meantime, coral reefs the world over have begun to bleach, as sea surface temperatures rise (see links at @ 19 for instance). I would certainly be interested to see how the authors of that study explain that away on African dust. I don't doubt that the transport of dust into the caribbean region has an influence of the marine life, however the evidence for warming waters as the cause of coral bleaching has strengthened to such a level that scientists are now able to accurately forecast bleaching events: Coral bleaching forecast - Coral Bleaching Likely in Caribbean This Year - Sept 22 2010 And reality: Caribbean Coral Die-Off Could Be Worst Ever - 14 Oct 2010 And yes, coral diseases are a major problem, often after bleaching events have occurred. -
scaddenp at 19:34 PM on 5 December 2010Renewable Baseload Energy
Peter Lang - you were promoting nuclear on economics ground alone. I looked to see what expected nuclear pricing would be. Extremely confusing. I found this reference World nuclear which at least made sense with number that I know well. I gather you think the newer technologies like IFR and LFTR would be cheaper still? -
dana1981 at 19:13 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
Thanks all. David, I suspect the logic goes that in the short-term, cloud feedbacks will prevent dangerously rapid warming, and in the long-term we'll eventually move away from our reliance on fossil fuels. After all, they're limited resources anyway (particularly oil). I suspect the (wishful) thinking is that we'll run out of oil before climate change becomes too dangerous. And of course there's always the 'warmer is better' mentality - I'm not sure if the Lindzens and Spencers subscribe to that, but many skeptics do. -
Daniel Bailey at 18:37 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
David, as I understand it, people in denial (of any sort) grasp for anything that will allow them to keep their illusion that "everything's going to be all right". To maintain the fiction is all that matters, even if it means saying the sky is green and the sun rises in the west... -
David Horton at 18:27 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
What I have never understood about the Lindzen-Spencer position is what do they see happening in the longer term? The clouds don't stop the CO2 build up, so even if they were right, the rise and rise in greenhouse gas concentrations would overwhelm the cloud effect. Or do they imagine cloud cover getting thicker and thicker for the rest of the century keeping pace with rising CO2? And what would be the effect of that on agriculture and the environment? The only relevant negative feedback would be one that began removing CO2 faster than we could pump it into the atmosphere, and there is, sadly, nothing that can do that. And yet people keep quoting Spencer as if this clouds are some kind of serendipitous mechanism that will providentially save us all, no need to worry, keep burning fossil fuel as fast as you like. Or am I missing something in the logic of all this? -
Chris G at 18:01 PM on 5 December 2010The human fingerprint in the seasons
Muon, Yes, my graph is essentially a running mean with a 66-year window. (I think this is less than clear on the graph because the curve is justified on the left edge of the aggregation window rather than centered.) The data are noisy and if you can't explain the noise, the best thing to do is average it out. I like to use multiples of 11 because I surmise that the solar cycle will have some effect, and it is about 11 years long on average, and using a window over one complete wave, or multiples of the wave, is the best way to smooth out the noise induced by that wave. As a matter of preference, when I am making a picture depicting the larger effects, I like to average, or otherwise smooth out, the smaller ones. Tom, I read your posts and I hunted up some other material, and I agree it is true that the stratosphere will be cooler than it was even after a new equilibrium is reached largely because of the blockage from below and increased radiative energy loss from above, but I don't believe it is the only game in town. I do have some quibbles: I don't think it is very accurate to categorize the whole troposphere as optically thick. The mean altitude of emission is 5-6km, and that is about half the average altitude of the tropopause. So, the troposphere is getting optically thin at some point below the stratosphere. Optically, I don't think there is a clear cut-off between thick and thin; so, this is somewhat a matter of how they are defined. In a state of equilibrium, a body emits the same amount of energy as it receives. If slightly more insulation is added to the body, then the emission will be less than it was until a new, higher equilibrium temperature is reached. You can't raise the energy level within a body while keeping the inflow the same unless you reduce the outflow. In the case of the earth, the reduction of outflow would be observed as stratospheric cooling. The pattern of a warmer surface and a cooler stratosphere this effect causes would be be hard to distinguish between H2O and CO2. I think you are taking the blanket analogy a bit too literally. If it makes you like it any better, you can say that it is a body in space (like the earth is a body in space) that is tightly covered in a thin insulating layer that does not appreciably change its surface area. I mean, if you define the surface area by using the optical TOA, what is the difference in surface area between an earth with 287 ppm CO2 and one with 385 ppm CO2, and what is this difference in comparison to the total surface area? Without doing the math, I can ballpark it as pretty dang negligible. So, it doesn't make a great deal of sense to introduce the idea that adding more insulation to the body appreciably changes the surface area from which it emits. Convection doesn't transfer energy in space. A cold-blooded animal is a poorer analogy than some generic body of matter receiving energy because said animals in time achieve the same temperature as their surroundings. In contrast, of course, the earth is continually receiving energy from the sun and stays considerably warmer than the surrounding space, if you could say that space has a temperature. Blankets also limit radiative energy loss. -
Philippe Chantreau at 17:57 PM on 5 December 2010A basic overview of Antarctic ice
Bill, you make it easy to misinterpret. What exactly are you trying to say, in a few words? This: "My similar statement was not based on the visual graph but was a rough rule of thumb mathematical estimate of the effect of reducing the ice loss percentage by 30 to 40% from subtracting the antarctic ice gain from the arctic ice loss and by increasing the extent by 50% by adding the Antarctic maximum extent to the Arctic maximum extent." What is the point of such manipulations? The only way to assess the significance of global sea ice loss is to examine real global sea ice data. Do it daily, monthly, whatever but I doubt that building fictitious quantities by adding numbers at various times of the year can show much about reality. "Since albedo is an ongoing year round phenomena." In the same sentence, you mention Arctic sea ice, so I assume that the albedo statement pertains to Arctic sea ice. Are you serious? I have very little time to devote to climate blogging these days. From a cursory read of your posts above, it does not appear that your assertion that the global sea ice decline is not statistically significant was supported by a real data analysis. Was it the case or not? What I read from you does not appear any better, a priori, than eyeballing a graph. I contend that data analysis from either NSIDC or CT will show that the decline in global sea ice is statistically significant. I have not the leisure of going at length about it. Tamino looked at the numbers again not long ago: "For the Southern Hemisphere, summer minimum has increased at about 9,000 km^2/yr while the winter maximum has increased at about 14,000 km^2/yr. For the Northern Hemisphere, on the other hand, the decrease in winter maximum has been about 42,000 km^2/yr and the decrease in summer minimum has proceeded at about 81,000 km^2/yr." The differences between these rates leaves little doubt IMO but feel free to attempt proving otherwise. -
adelady at 17:28 PM on 5 December 2010Renewable Baseload Energy
The one great advantage of renewables from my perspective is that they circumvent one of the major unknowns of the next century or so. Just how much hotter and drier it will get, and how long will they stay that way, before things improve. Renewables need no cooling water for operation. If France and the USA have already had to take plants offline when rivers ran hot or low, we really don't want to put too many of our eggs in a basket that needs reliable flows of cooling water. And I'd be very reluctant to put a coal or nuclear plant that has to operate 80 years from now at the shoreline to use seawater. -
adelady at 17:10 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
Well done Dana. Of course it's not good news, but it at least gives some support for the "instinct" that low cloud sensitivity was more wishful thinking than anything else. On the bright side, someone else just possibly might do further quality work in this area with a better outlook. (If only.) -
quokka at 16:21 PM on 5 December 2010Renewable Baseload Energy
351 Rob Honeycuttyou are also ignoring that nuclear can't switched off when people go to bed at night. That means you run spin reserve. So, ultimately nuclear is not very flexible. The larger a percentage of output that is dedicated to nuclear the less efficient it is. Renewables are exactly the opposite.
Your assertion that nuclear power plants do not and cannot load follow is prevalent myth that is not true. French NPPs do adjust output according to load. I understand that German NPPs can also, but there is probably no grid requirement to do so. Areva states that the EPR can adjust output from 60% to 100% of nameplate capacity at the rate of 5% of nominal capacity per minute at constant temperature. (as per Areva website). Nuclear can handle base and a large portion of intermediate load economically. Exactly at what point it may be uneconomic would be grid specific and could only be determined by detailed modeling. I must confess to be utterly bamboozled by this argument that renewables are less "wasteful" - without even defining what wasteful means. One of the characteristics of grand plans for renewables is the requirement to overbuild capacity precisely because of the intermittent and unreliable nature of the generators. I would be very cautious of claims that demand can be time shifted by smart grids and clever gadgets until we see in practice the magnitude of any such change. I'm not prepared to bet the future of the climate on this stuff. -
Ned at 16:06 PM on 5 December 2010It's albedo
And, back to the previous question: "Has it been proven that the equilibrium temperature of a body in a constant EM radiation field can be altered by altering it's reflectivity [...] Is it not necessary to demonstrate that in order to prove that albedo or aerosol-based reflectance can influence the global mean temperature?" There are actually quite a few different ways you can see this operating in the real world. If you live in a place where it snows in the winter, you might notice dirty snow melting faster than clean snow -- because its lower albedo causes it to absorb more sunlight and warm up faster. The same principle is what makes ice ages cold ... as the large continental ice sheets expand, they reflect more sunlight back to space, which makes the local climate cooler, which helps the ice expand further. (When they begin melting, at the end of each glacial episode, the same process happens in reverse -- the loss of ice makes the landscape absorb more sunlight, making it warmer, which melts the ice further....) -
Tom Dayton at 15:56 PM on 5 December 2010It's albedo
Rovinpiper (bagpipes?), try playing with this calculator. -
Ned at 15:56 PM on 5 December 2010It's albedo
Hi, Rovinpiper. Good questions you're asking. Kirchoff's Law refers to absorptance and emissivity at the same wavelength -- i.e., an object's emissivity at a given wavelength will equal its absorptance at the same wavelength. In the case of a planet (e.g., earth), almost all the radiation it receives from the sun is at short wavelengths (UV, visible, and near-infrared). In contrast, all the radiation it emits is at long wavelengths (> 3 micrometers). So, a change in the earth's albedo can increase or decrease the amount of energy that is absorbed, without necessarily increasing or decreasing the amount of energy that is emitted. When this happens, the planet then warms or cools until the outgoing radiation is once again in balance with the incoming radiation. Hopefully that's clear. It's around midnight here and I'm not really a night person, so my explanations may not be all that coherent...... -
Rovinpiper at 15:44 PM on 5 December 2010It's albedo
Hi Tom, Thanks for replying to my question. Do you have a solid source for a proof of that? I just read about Kirchoff's Law and it seems to say that if the Earth becomes more reflective it becomes less emissive by an equal amount and so temperature remains unchanged. -
michael sweet at 15:04 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
Excellent post Dana. It is so sad that the data look so bad. -
Leland Palmer at 14:42 PM on 5 December 2010Positive feedback means runaway warming
Hi muoncounter- I've read one of Archer's papers, but it's been a few months and I'll reread it. I'd feel more confident in Archer's stuff if he hadn't written several joint papers with ExxonMobil chief scientist Kheshgi: ExxonMobil Contributed Papers on Climate Science17. Archer, D., Kheshgi, H., and Maier-Reimer, E. 1997. Multiple Timescales for the Neutralization of Fossil Fuel CO2, Geophysical Research Letters, 24: 405. 19. Archer, D., Kheshgi, H., and Maier-Reimer, E., 1998. The dynamics of fossil fuel CO2 neutralization by marine CaCO3, Global Biogeochemical Cycles, 12:259-276. 35. Kheshgi, H. S. and Archer, D. 2004. A non-linear convolution model for the evasion of CO2 injected into the deep ocean. Journal of Geophysical Research,109, C02007, doi:10.1029/2002JC001489. 13. Kheshgi, H. S., and D. Archer, 1999: Modeling the Evasion of CO2 Injected into the Deep Ocean, in Greenhouse Gas Control Technologies, edited by B. Eliasson, P. Riemer and A. Wokaun, pp. 287-292, Pergamon.
I can see why an earth scientist might collaborate with ExxonMobil, or it's chief scientist. They undoubtedly have a monumental knowledge of geology, and an immense treasure trove of geological information. Having said that, though, Archer's estimate of the total amount of methane hydrates is on the low end of current estimates. It's a really important subject, and I'll get my information about it from sources with no known connection to ExxonMobil. -
Roger T. Thomes at 14:05 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
This is a superb article. Here is something that is not dumbed-down. There are enough facts on this topic to allow the readers to make their own conclusions.--R.T. Thomes -
dana1981 at 13:37 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
My name's not John, but thanks dansat! Bob Guercio - I agree, the odds are not too good that Lindzen and Spencer are right. Not nearly good enough to bet the farm on. -
Bob Guercio at 13:16 PM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Daniel, This is the other cause of cooling of the stratosphere. However, this is relatively easy to understand and I do not want bring it into my writeup because it will only confuse the very complex mechanisms that cause greenhouse gases to cool the stratosphere. But yes. Thinning of the ozone layer also causes the stratosphere to cool. Bob -
Bob Guercio at 13:06 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
Richard Lindzen and Roy Spencer believe that the formation of low level clouds resulting from global warming will result in a negative feedback keeping the warming in check. I just don't get it! How much statistical certainty do they have that this is going to happen? My guess is "not too much" so where is the logic in taking such a chance with our only world. Furthermore, suppose they can give a certainty which is ridiculously high, say 99.99% Does it really make sense to allow the chemistry of the planet to change so drastically considering the unknown and potentially devastating consequences? Like I said "I just don't get it!" Bob -
dansat at 12:51 PM on 5 December 2010A Cloudy Outlook for Low Climate Sensitivity
That's a heavy weight paper. Had not seen it yet. You deserve your growing reputation John! Thnx for the post! DanResponse: This post was written by Dana (who does deserve his heavyweight reputation as he's written most of the advanced rebuttals). -
Daniel Bailey at 12:47 PM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
From one following the discussion as best I can, thought I'd throw this out there:"The loss of ozone that has occurred in the Antarctic lower stratosphere during each spring since 1980 has led to a decrease in the lower stratospheric temperature that persists into the summer season." "Comparison of the summer temperatures in the NH and SH indicates a distinctive offset beginning around 1980. The increase in temperature near the SH summer mesopause has implications for the presence of polar mesospheric clouds." "The Antarctic ozone hole is perhaps the largest persistent perturbations to the atmosphere during recent decades. As shown here, the climate impacts of this anthropogenic change extend into the upper mesosphere. As the ozone recovers in upcoming decades, we expect to see shifts in the SH summer mesopause that bring it closer to that in the NH."
From a science news article in Science daily; free copy of source study available here. A good chunk of the study goes over my head, like much of this thread. But these caught my eye (eye-candy, heh-heh): and If this was discussed already here, my apologies. The Yooper -
Rob Painting at 12:18 PM on 5 December 20102009-2010 winter saw record cold spells
Muoncounter - I'm talking about the cold winter UK, in particular, being a regular occurrence, based on changes in the Arctic Oscillation. Not the "but there's record cold in Wagga Wagga" or whatever line the skeptics cling to. Sure it's likely to be a transient phase (the rest of the world will still be getting warmer) but I expect a similar future break-down in the circum-polar winds around Antarctica (Southern Annular Mode) will lead to similar outbreaks of cold weather. Living in New Zealand, that may affect me personally, but I probably won't be around when that happens. -
muoncounter at 12:04 PM on 5 December 20102nd law of thermodynamics contradicts greenhouse theory
#299: "nonsensical claim that planetary albedo is irrelevant to temperature" We went through a week or so of back-and-forth on the Chaos theory and global warming thread over 'climate calculators' that show specifically how albedo influences temperature. Seemed like a no-brainer at the time. -
muoncounter at 11:54 AM on 5 December 2010The human fingerprint in the seasons
#69: "It isn't exactly what I was expecting." When you do mean:66 after doing every:12, aren't you averaging 66 years? Cutting back even to a 30 year mean gives a cleaner break between NH summer and winter; SH summer and winter are overlain. -
Tom Curtis at 11:48 AM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Bob @133, this is correct, and I must have misunderstood what you where asking. My claim was only about the stratosphere which will (I believe) reach a steady state very quickly given constant inputs. Whether "very quickly" is a few month or a couple of years I'm not sure. @144, I believe this is correct, with motion of the whole molecule contributing to temperature, while vibration contributes to heat capacity. I am, however, not sure. In passing, Joe Blogg's first paragraph @146 is a brilliantly succinct explanation of optical depth as related to this issue. Regarding your furture article, in a topic this subtle, I suspect it would be better to write an advanced version first, and only post a basic version once the advanced version is up. When you write a basic article, you may be able to do something along the lines of comment by Nullius in Verba at Science of Doom. Doing this, I would not treat the temperature profile as a rigid bar, but rather treat the stratosphere seperately from the troposphere. Essentially, you would be appealing to the not often commented upon fact that in the presence of a negative lapse rate, greenhouse gasses cool rather than warm. -
Tom Curtis at 11:06 AM on 5 December 2010The human fingerprint in the seasons
@69, I don't particularly like that analogy because blankets work by limiting convection. As such they can have very low emissivity and their final radiant energy can still be much less than the initial radiant energy of the body covered. However, going with the analogy, it is more accurate to consider a blanket partially covering a cold blooded animal. Once a steady state is reached, there will be less energy released per unit surface from the blanket than there is from the exposed body, or there was from the exposed body before being covered. -
Tom Curtis at 10:56 AM on 5 December 2010The human fingerprint in the seasons
Chris G #67, you may be failing to consider that the troposphere is optically thick in the 15 micron (CO2) band, while the stratosphere is optically thin. Because the troposphere is optically thick, if you increase CO2 the net outgoing radiation will stay relatively constant but originate slightly higher in the atmosphere. (The increased altitude will mean the source CO2 will be slightly cooler, resulting in a slight reduction in outgoing CO2.) In contrast, because the stratosphere is optically thin, absorption will approximate to the Beer-Lambert law, so doubling CO2 will approximately double absorption and emission. The effect of this depends on the difference between tropospheric and stratospheric temperatures. If the stratosphere were cooler than the upper troposphere by an amount greater than the change in temperature at the effective altitude of radiation for the troposphere, then the effect would be to warm the stratosphere. Otherwise the effect is to cool it. More importantly, doubling CO2 concentration will double the amount of energy absorbed by CO2 in collisions; and double the amount of that collisional energy radiated away by CO2. A significant source of that energy is UV radiation absorbed by ozone. Because, with higher concentration, the CO2 would be radiating away that energy more efficiently, the stratospheric temperature will drop to reestablish a steady state. I believe this to be a larger effect than the first one. I have discussed this in more detail on the Stratospheric Cooling post on this site, particularly at comment 83 and comment 120. -
Camburn at 10:48 AM on 5 December 2010Renewable Baseload Energy
Rob@351: 1. I do think the electric populsion of masses is going to happen. That is not very far away. Utilities are already planning how to sell more electricity. 2. Most of the "power up" is going to happen in the late night, early morning. 3. That in itself will require a more constant source of power. I agree, we need to do everything we can to limit the use of fossil fuels. They are a finite resource and should be used ONLY when necessary. It is obvious that solar is in its infancy. Nuclear is a mature energy source. Yes, in the US we have lots of NIMBY folks. We have fallen behind the rest of the world in thinking it seems as the rest of the world is building and planning to build 150 nuclear power stations. We are at one presently. Pretty dumb isn't it? http://www.world-nuclear.org/info/inf17.html -
Ned at 10:44 AM on 5 December 20102nd law of thermodynamics contradicts greenhouse theory
OK. So, damorbel recently wrote this gem: The wavelenth difference is indeed great but what that count for? Sure it indicates that the Sun/Earth system is in considerable disequilibrium. But the only significance of this is the nature of the disequilibrium, which is precisely what we are talking about, the contradiction of AGW/GHE 'science' and the 2nd Law of thermodynamics, exactly the OP topic of this thread. Now, he/she tries to explain it, but the only explanation is: (1) The difference in the wavelengths of radiation emitted by the sun vs. by the earth means that the sun and the earth are not at the same temperature. (2) This temperature difference means that heat will flow from one to the other. It should be obvious that this contributes nothing whatsoever of value. None of this justifies damorbel's nonsensical claim that planetary albedo is irrelevant to temperature ... and none of it has anything to do with AGW, let alone proving a "contradiction" between AGW and the 2nd law of thermodynamics. Damorbel, did you ever read the last paragraph of this comment? Did you understand it? I'd also note that damorbel has still not explained why he/she approvingly cites an explanation at wikipedia that explicitly relies on the exact same mechanism that he/she thinks violates the 2nd law of thermodynamics. -
Chris G at 10:37 AM on 5 December 2010The human fingerprint in the seasons
I don't know enough geology to produce heat content measurements for land, though I have seen heat content papers of the oceans. However, it struck me that NH versus SH should be similar if I were right about the heat content at depth. So, I tweaked my graph. No disrespect to Muoncounter, but I'm not sure which three samples 'mean:3' is applied to at WoodForTrees; so, I stuck with my first method for now. Besides, as much data is being aggregated already, I doubt that the additional months will change the shape much. Sea Surface Temperature Anamolies 2x2 of NH-SH, January-July It isn't exactly what I was expecting. Instead of NH and SH being very similar, instead, the SH is showing more disparity between winter and summer warming than the NH is. I wonder if I'm just seeing a random correlation or if there is a physical reason for this difference. I'd hazard a guess that it might have something to do with the north pole being in the middle of an ocean and the south pole being in the middle of a continent. Tom Curtis, Continuing... To use a loose analogy, if there is a body being heated by some relatively constant energy source, and you cover it with a blanket, until a new equilibrium temperature is reached, the blanket will be cooler and radiate less energy than the body used to. But, after a new equilibrium is reached, it will radiate exactly the same. Of course, the body will be warmer. -
Phil at 10:31 AM on 5 December 2010The human fingerprint in the seasons
actually thoughtfull @65 I still think you are missing HR's point. If you need to invoke TSI measurements then this work does not supply new independent evidence for an increased GHE, because you are reliant on the TSI measurements to interpret the results "correctly". I'm no expert in this field but it seems to me that Michael Sweet @24 had a good point: Given the short lifetime of Water Vapour in the atmosphere then surely it responds to the changing local solar irradiance, but not to heat "trapped" by CO2. Given that, it seems that this work is more convincing the Nighttime/Daytime argument when WV has less time to respond. -
Spaceman Spiff at 10:03 AM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Sphaerica at 03:12 AM on 5 December, 2010: You said: "So CO2 prevents energy from escaping from the troposphere into the stratosphere in the CO2-IR bandwidth, and CO2 actively cools the stratosphere by emitting energy in the CO2-IR bandwidth." This is not correct. CO2 within the troposphere is responsible for emitting most of the light within the 13.5-17 micron CO2 band. This light (except for the sharp spike right near 15 microns) emerges from somewhere within the mid and upper troposphere, where the gas is just becoming optically thin to those transitions. This is what is meant by a "photosphere". The light of stronger transitions (near the bottom of the CO2 spectral feature) will emerge higher up in the troposphere (where the density is lower and the remaining path length out is shorter), where the T is lower and so the thermal emission is weaker. The light of weaker transitions emerges from deeper within the troposphere, where T is higher and thus the thermal emission is greater (the walls of the CO2 spectral feature). Have a look at the figure (from RealClimate) I posted in #126: CO2 absorption strength vs. wavelength. Nearly all of this radiative energy passes through the stratosphere, with the exception of the very strongest transitions lying very near to 15 microns (the sharp spike in the figure I linked to, and visible by running a default radiative model from Archer's website). The photosphere for these transitions lies in the stratosphere, where T is higher and thus so is the emission intensity. -
Chris G at 09:57 AM on 5 December 2010The human fingerprint in the seasons
So Tom (#54), Convection is a result of lower air holding more energy (or being warmer, and thus relatively less dense on a curve described by atmospheric density driven by gravity and PV=nRT) than the air above it; where does this energy come from if not radiated or conducted from the surface? Convection is a movement of matter, not really a transfer of energy from some matter to some other matter. Flippancy aside, I see your point that the stratosphere will radiate more with more CO2, but it is also true that the troposphere will absorb more with more of any GHG. If it absorbs more, it will also be warmer and radiate more. What I've read leads me to believe that stratospheric cooling has more to do with the radiative imbalance that the earth is currently in. Mouncounter, Thanks! Don't mind at all, wouldn't have posted what I had if I wasn't looking for some other ways of doing it. Thinking more on the difference between the degree of warming of the NH compared to the SH. I would hazard a guess that it has something to do with the NH having a lot more land surface than the SH. Heat at the surface of the ocean gets distributed downward a lot more readily than heat at the surface of land. So, you'd want to look more at heat content down to some depth than surface temperatures. -
Joe Blog at 09:55 AM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Bob Guercio at 08:51 Yes, its one of those subjects that takes a bit o nutting out... but then it all becomes clear, and the T profiles vrs altitude suddenly make sense. It was something that took me many hours to fully "get". (thanks to science o doom, and Ramanthan and Dickinson) -
muoncounter at 09:51 AM on 5 December 20102009-2010 winter saw record cold spells
#14: "become an annual skeptic talking point. " It already has. Try searching 'coldest November in living memory'. But here is some interesting anecdotal perspective on historic winters in the UK. -
Tom Dayton at 09:28 AM on 5 December 20102nd law of thermodynamics contradicts greenhouse theory
No, damorbel, you are incorrect that "the total scattering depends only on the amount of scattering material." Scattering does depend on frequency of the radiation and the size of the reflecting matter. But your obsession with scattering is not relevant to absorption, which is the problematic behavior of greenhouse gases. Just to get you off of your reflection obsession, let's assume that you are correct that the same amount of radiation emitted by the atmosphere, water, and land toward space are reflected back, as the amount of radiation coming from the Sun that is reflected by all those. As that emitted radiation is on its way toward space, before it is reflected back down, some of it is absorbed by greenhouse gases. The absorbed radiation's energy can't be reflected, because it's not in the form of radiation any more. Only some of that energy immediately is turned back into radiation. So right there you've got a greenhouse gas trap of radiation and therefore a trap of energy, completely in addition to any reflection. Even if you were correct about reflection (you're not), the greenhouse gas absorption effect would exist, so increasing greenhouse gases would trap more energy. -
Bob Guercio at 08:51 AM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Joe, As I reread what you wrote, I realize that you were correct. I needed time to digest everything and put the pieces together. Thank you, Bob -
Joe Blog at 08:43 AM on 5 December 2010Stratospheric Cooling and Tropospheric Warming
Bob Guercio @ 145 Yes... but the thing is with the denser atmosphere at lower altitudes, is that what is emitted by co2, is absorbed by co2, simply because there are more molecules per volume. As you rise in altitude, with the reducing pressure, the molecules absorb less and less of the emitted radiation of their neighbors. Just due to the distance/space between molecules. So at lower altitudes, even though a molecule at a warmer T is emitting more, its simply swapping energy with its neighbors. But once you reach the tropopause, the distance between molecules, means that more energy escapes than what is absorbed from its neighbors. I tried to explain the reason for this at 57. Collisional exchanges with a gas at radiative equilibrium, will mean that energy is being deposited into the n2, o2, when the co2 is a net radiator, the collisional exchange will work the other way, from the warmer n2 @ o2 to the cooler co2(because it is loosing energy through radiation.) -
muoncounter at 08:42 AM on 5 December 2010The human fingerprint in the seasons
#63: "either a solar or CO2 initial forcing will be accompanied by a strong H2O GHG positive feedback" The cause and effect of this mechanism seems a trifle thin and the story quickly becomes quite convoluted. a. If we postulate that once the initial solar or CO2 forcing gets a warming cycle started, do we then suggest that H2O feedback alone is sufficient to keep it going? Is H2O feedback sufficient to restart the warming system after a transient cooldown, such as a Pintatubo type event? b. If solar alone is the initial forcing, where is the record of that solar event? Have they happened in the past? Where are those records? c. How can CO2 be an 'initial forcing', when CO2 forcing continuously increases with the log of the CO2 concentration relative to 'pre-industrial'? Initially the ratio of CO2 to pre-industrial would be close to 1 and its log close to 0. d. If it is accepted that CO2 is the initial forcing, why is the same mechanism (CO2 forcing) not continuously doing the forcing? How does it get switched on and off? As I said, convoluted. It is stunning that some folks will accept these complicated schema when there is a far simpler answer at hand. -
actually thoughtful at 08:36 AM on 5 December 2010The human fingerprint in the seasons
Sphaerica - we KNOW there is no notable solar input to the current warming - from direct measurements of insolation, not from the seasonal patterns this post discusses (although the data here re-confirms the fact of no solar fingerprint). It seems my analogy stands.
Prev 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 Next