Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.


Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Twitter Facebook YouTube Pinterest MeWe

RSS Posts RSS Comments Email Subscribe

Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...

New? Register here
Forgot your password?

Latest Posts


Recent Comments

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  Next

Comments 1 to 50:

  1. wilddouglascounty at 01:14 AM on 25 May 2022
    Planetary Diets

    Another factor, of course, is the age of the person and the "age" of the economy. A young person in the armed services who is physically quite active, burns a heck of a lot more calories than the retiring 67 year old general leading the troops. This gets a lot more complicated very quickly: can the young private consume more calories without affecting the overall food supply, and can the general cut back on his dietary choices despite easier access to very rich and expensive options? And how many staff have to be fed to provide the support network for each?

    I like the analogy, which anyone who has tried to lose weight will instantly understand the difficulty of, and as you said, it's even more complicated than the analogy. Its also useful in that needed sacrifices to accomplish the goal depends on a good understanding of the variables and not a small measure of willpower. Thanks for this!

  2. Climate change will transform how we live, but these tech and policy experts see reason for optimism

    نقل عفش الكويت حولي الاحمدي الفروانيه مبارك الكبير الجهراء

    نقل عفش

    نقل عفش الكويت

  3. Skeptical Science New Research for Week #17 2022

    شركة نقل عفش

    شركة نقل عفش الكويت

    نقل عفش حولي

    نقل عفش الاحمدي


    نقل عفش الجهراء

  4. Skeptical Science New Research for Week #17 2022

    نقل عفش الكويت حولي الاحمدي الفروانيه مبارك الكبير الجهراء

    <a href=""></a>

    <a href="">نقل عفش</a>

    <a href="">نقل عفش الكويت</a>

    <a href="">تركيب اثاث ايكيا</a>

    <a href="">نجار ايكيا</a>

    <a href="">نجار الكويت</a>

    <a href="">نجار ايكيا</a>

    <a href="">نقل العفش الكويت</a>

    <a href="">تركيب اثاث ايكيا</a>

  5. Doug Bostrom at 09:10 AM on 23 May 2022
    Breaking Through Twitter's Spiral of Silence with the #ClimateDaily Pledge

    Here's a freshly published article directly relevant to this campaign:

    Social Engagement with climate change: principles for effective visual representation on social media

    Open access. 

  6. Breaking Through Twitter's Spiral of Silence with the #ClimateDaily Pledge

    I think SKS would have to clearly state that the Christian Bible is not a source of peer-reviewed science and that political opinions do not trump peer reviewed science. Since SKS prohibits discussions about religion and politics, could this be done?

    Moderator Response:

    [DB] Off-topic and moderation complaints snipped.  Really, you know better. 

    Please stay on-topic.

  7. Breaking Through Twitter's Spiral of Silence with the #ClimateDaily Pledge

    Most of my discussions about peer reviewed climate science result in rebuttals about what the Bible says, or a popular political opinion from a prominent corporate leader. Any advice on that? 

  8. Doug Bostrom at 10:10 AM on 21 May 2022
    Breaking Through Twitter's Spiral of Silence with the #ClimateDaily Pledge

    Climate silence is climate surrender. 

    It's worth noting that many people won't talk about climate change in online venues (or standing at a vista in a national park for that matter) because what stands for discourse around climate change is often dominated by ovewrought, highly emotional people expressing their fear of climate change, climate mitigation and climate adaptation as dismissal of the fairly simple handful of basic principles governing the climate. These few make talking about climate change extremely unpleasant.

    So, one must either swallow one's feelings of repugnance for the process of dealing with such folks, or clam up. It's of course far easier to do the latter. Particularly, everybody has limits of patience, and repeatedly dealing with the same fundamentally misguided and flawed opinions expressed in heated and often personal expressions becomes boring and hence exhausting.

    In short , anybody with a significant number of followers and committing to daily climate change reminders is going to encounter some tiresome crap.

    "Be a Marine" and deal with it. But here are a few tips to keep help things centered and most importantly useful.

    • The audience for disagreement is not those who are talking but those who are only reading. Write for the bystander. Make it easier for bystanders to understand what they're truly learning by witnessing disagreement, namely that there is no actual basis for disagreement and that disagreement is not only not rooted in what we know about climate systems but rather in matters having nothing to do with climate science itself.
    • Ad hominem remarks are a means to change the subject. Don't let the subject be changed— stick with the topic of climate change, remind bystanders of the purpose of ad hominem remarks (whether directed to yourself, other individuals or entire classes of persons).
    • Any remark dismissing or disagreeing with consensus agreement among the actual scientific community on matters of climate change -must- be accompanied by a citation to published research. Insist on this. Keep reminding the interlocutor of their deficiency until this is accomplished, or their energy is sapped.
    • Aside from a small handful of professionals, folks popping up to disagree with common sense are expressing their fear of something else. Remind them (and bystanders) of this.  
    • You will be challenged to explain why fringe theories are wrong, or engage in discussion over quibbles. Don't waste your time on this when the work of doing that has already been accomplished. As Steve says, lean on others; there are no new counter-arguments to scientific consensus left to explore, and more or less all of them are covered here at Skeptical Science. You won't change your interlocutor's mind but pushing a link to correction provides a service to bystanders. 
    • In short, educating bystanders is the only useful purpose for engaging with disagreement on climate change in any public forum. Exploit opportunities to the fullest extent possible— which is not complicated.
  9. The kids are not OK

    Yes, the willingness to contemplate that one's initial judgment may be incorrect is a sign of a real skeptic and scientist. Whether it is with respect to scientific conclusions, or with respect to what an audience might be interested in hearing, it shows some openness to being swayed by evidence.

    If you look at the situation in the climate discussions, the simple question "what would it take to change your mind?" will tell you a lot about someone's level of reasoning on the subject.

  10. One Planet Only Forever at 00:55 AM on 21 May 2022
    Breaking Through Twitter's Spiral of Silence with the #ClimateDaily Pledge

    The Spiral of Silence problem is likely partly, and maybe significantly, a result of the development of inflexible minds.

    See my comment on the recent SkS reposting of "The kids are not OK".

    As the recent BBC Ideas video "How new experiences 'rewire' your brain" explains things, people can respond to encountering something new or unexpected (prediction error - meaning not what a person's experience-based learning would lead them to initially expect) by flexible learning or inflexible resistance to learning (resisting changing their developed beliefs).

    People who are less flexible thinkers can learn to become more flexible thinkers. But if they developed their identity as part of a group that includes inflexible thinkers on an issue they risk being rejected from that group if they question and try to change the developed beliefs, even if the developed beliefs are contradicted by evidence or are understandably misunderstandings that are harmful to others.

    Harmful influencers who understand this will try to limit the raising of awareness or improvement of understanding. They will fight against the need to learn to limit and correct harmful lack of awareness and harmful misunderstanding.

    It would be great if Social Media Star Influencers would become part of the team that tries to raise awareness and limit and correct harmful misunderstanding. However, those people risk losing 'likes (and related profit)' if they do that.

  11. One Planet Only Forever at 03:24 AM on 20 May 2022
    The kids are not OK

    The author's flexibility in response to experiencing something inconsistent with her developed thoughts and expectations is a great example of an important understanding regarding people who resist accepting climate science and the related need to change developed ways of living and change related developed beliefs.

    The recent BBC Ideas item "How new experiences 'rewire' your brain" is a brilliant 4 minute presentation regarding the value of developing the ability for flexible thinking.

    As the BBC item states it helpful learning is about helpfully changing your mind in response to encountering a "prediction error". You learn to reduce the chance of future "prediction error". That can reduce stress, anxiety and related anger.

    A lack of diversity of experience and a developed set of passionately held beliefs related to that limited experience can result in a lack of flexibility in response to encountering a "prediction error".

    In my work as an engineer I often encountered inflexible thinking due to motivations for things to be cheaper or done quicker in pursuit of higher profitability. The people with the "profit motive" would create ethical conflicts of interest. And trying to explain the technical reason they could not get what they wanted pften failed to convince them, failed to change their mind. In some cases persisting in the attempt to explain why they could not maintain their desired beliefs and get what they wanted made them angrier.

  12. Doug Bostrom at 02:35 AM on 18 May 2022
    The kids are not OK

    A few years ago I assisted our local high school with a "climate fair," a two-day event organized at the insistence of the school's students. This effort was mounted against opposition that was not rooted in disagrement but rather inertia and the administration's preferences to practice "business as usual," that business already being quite sufficiently difficult. A metaphor, of sorts. 

    The hardest part of the work was the lying. Summarizing our challenges while simultaneously recognizing the various cultural forces arrayed in opposition to repair leaves no room for honest optimism, yet our duty as adults is to offer hope to children. I found myself bereft of cause for hope, and thus in a position of daily lying. 

    Apparently lying isn't enough, per this article. 

  13. Why and How to Electrify Everything

    The thing is if the heat pump cuts out at very low temperatures, have a few basic fan heaters or convection heaters available. They are very low cost to buy these days, and you wont be running them too often.

    "Dont make the perfect the enemy of the good" (Voltaire)

  14. michael sweet at 22:46 PM on 14 May 2022
    Flying is worse for the climate than you think

    There is also the possibility of future production of aviation fuel using CO2 captured from the air and renewable electricity (electrofuels).  This article describes the process and estimates that the cost of electrofuel would be about $4 per liter today. The projected cost would drop to below $1 per liter in 2050.  $1 per liter is comparable to current fossil jet fuel.  I note that fossil jet fuel is likely to increase in price in the future.

    To me the point is that it is possible to make jet fuel with no net release of CO2 into the atmosphere if you are willing to pay for it.  Today we simply avoid the payments by shifting the cost to future generations.

    The technologies exist to convert the economy to completely renewable energy once governments have the will to make those changes.  Then we will not have to worry about the Russians or OPEC damaging the economy by witholding oil from the market (and we will address climate change).

  15. Flying is worse for the climate than you think

    Lawrie @6. Traditional fossil fuels are not identical to effects on climate to biofuels. Traditional aviation jet fuel uses hydrocarbons that have been lying in the ground for millenia so they are essentially a new pulse of CO2 into the atmosphere. Biofuels are adding a pulse of CO2 that is the same as the CO2 their biomass removed shortly before, so they are effectively carbon neutral. (Ignoring carbon used in manufacturing the biofuels). 

  16. Flying is worse for the climate than you think

    Thanks Eclectic @4. As a scientist I have always found the term biofuels to be problematic. Bio implies userfriendliness to the atmosphere. If jet fuels are constrained to hydrocarbons of similar energy density to currently used jet fuel then for climate change purposes CO2 emissions will be identical. We might feel better but the atmosphere won't notice any difference.

  17. Volcanoes emit more CO2 than humans

    Respectfully,  I believe we're all missing the point. 

    I don't care if global warming is occurring and I care even less if it's human activity that the culprit. If we don't like CO² (I like CO², because it increases crop yields in a hungry world),  then either live like a caveman and don't use fossil fuels or go nuclear (my preferred option). Clearly solar and wind are not the answer. Insulation and self denial are not the answer. These just assist in reducing energy.  (Improving the aerodynamics of a car is pointless, if there's no engine). 

    We need less people on the planet and - most of all - less politicians)

    Moderator Response:

    [DB] The topic of this post is about how human activities release vastly more greenhouse gases into the active carbon cycle than do al the volcanoes on Earth combined.  Please stay on-topic.  Off-topic snipped.

  18. Philippe Chantreau at 04:10 AM on 13 May 2022
    Flying is worse for the climate than you think

    The video takes a rather drastic shortcut when it comes NOx emissions. The overall long term effect of NOx at altitude is likely to be a net negative radiative forcing because of the shortening of the methane residence time. The effect of contrail clouds is more difficult to ascertain and is likely a small net positive. Of course, the CO2 emissions remain the main concern, but presenting NOx emissions as making flying even worse is misleading. The whole picture is more complex.

    There is very large uncertainty as to the total net forcing and how it compares to the CO2 forcing alone. It is pretty much admitted, however, that the total net forcing is higher than the CO2 forcing alone.

    NOx is much more of a concern for low altitude operations and air quality around airports. Unfortunately, a similar trade-off exists to that of diesel engines for cars and reducing NOx involves higher CO2 emissions. 

    The truth remains that aviation is the most bang for the buck that burning hydrocarbons can deliver. That is where energy density really hits the spot. Unlike many other applications, there is currently no viable, or even prospective, alternative technology that comes close to the performance obtained with ICEs for propelling aircrafts. This holds true for both turbines and reciprocating, the latter being surprisingly more efficient in that role than is ususally believed. If we are to give attention to low hanging fruits, aviation certainly is not one of them (no pun intended).

    The only electric aircraft I know of that is currently well engaged in the certification process is ALICE. When ready, it will carry 8-10 passengers over 5 to 600 miles at speeds around 220 to 240 knots. That is the level of performance of a King-Air 200, without the ability to refuel and be ready for flight again in less than 30 min. 

    Biofuels produced with clean energy are the best bet for a future carbon neutral aviation. However, if all electricity production and terrestrial transportation could be carbon free, aviation would not be a much of a factor, as only these 2 dwarf aviation emissions. 

  19. Daniel Bailey at 02:25 AM on 13 May 2022
    Why and How to Electrify Everything

    @David-acct, properly-equipped Mitsubishi Hyper Heat mini-split ductless systems can function to as low as -25 F.  When such systems hit their base limit, they do shut down until temperatures rise above those minimal levels.  In northern climates, the point is to pair these systems with backup systems that can take over in the event of really cold airmasses dropping out of the Arctic for those few times per year that they actually occur.  No one is saying to use them as a standalone solution for all cases and climates.

    - Just a guy who used to sell those systems for a time in Northern Michigan.

  20. Flying is worse for the climate than you think

    Lawrie @3 , as far as jetfuels are concerned, their composition is described as predominantly  hydrocarbon chains of C9 - C16 length (kerosene-like).   "Biofuels" for jet engines have a similar composition ~ in part to allow usage in the already-existing modern jet engines (and in legacy jet engines too).  It would be problematic to re-design / re-manufacture jet engines to use short-chain hydrocarbon fuels such as alcohols.   And alcohols, although cheaper to produce, have lower energy density and would be proportionately heavier to carry : as well as requiring larger & therefore heavier tanks.

    What exactly are biofuels, you ask?   A loose definition would be :- any hydrocarbon molecule of one or more carbon atoms, derived from feedstock that has grown in recent years (say, less than 100 years)  . . . as opposed to fossil fuels ~ where the feedstock comes from organisms that grew  100+ million  years ago.   An easy difference !

    Why use the term "biofuels" ?   A convenient term, since it is brief and people intuitively know what is meant by it.

  21. Doug Bostrom at 17:47 PM on 12 May 2022
    Why and How to Electrify Everything

    Point of clarification: heat pumps don't "stop working" at a certain temperature. Their efficiency becomes less, and at a certain point they'll not be able to keep up with load. 

    In combination w/backup heat sources, the net result in practice is that heat pumps still substantially reduce energy consumption even at very low air source temperature. That portion of gain which is not obtained via combustion (near or far) is "electrified." 

    Performance in lower source temperature is exhaustively covered here (w/state of the art off-the-shelf equipment as of 7 years ago):

    Cold Climate Air Source Heat Pump (Minnesota Department of Commerce, Division of Energy Resources)


  22. Flying is worse for the climate than you think

    walschuler talks of biofuels. Does anyone know what the chemical composition of "biofuels" is and how they compare with standard jet fuel for CO2 emissions? Strictly speaking are not fossil fuels also biofuels?

  23. Why and How to Electrify Everything


    your link to the heatpumps indicate they only work down to -10f & -13f

    "Fujitsu cold climate heat pumps (AOU line) have a lot in common with Mitsubishi’s. But instead of delivering 100% of their capacity down to 5F, all but the smallest Fujitsu models offer 75-95% of their capacity. They’re rated to work down to -10F, just above Mitsubishi’s -13F."

    That doesnt do much good when places like MN, MT, ND, SD regularly have 1-2 weeks at a time with -20f .  Further 

  24. Why and How to Electrify Everything

    Doug @12 , thank you for that information.

    I am not sure what is happening with the new vaunted pouch cell battery : but apparently Bolt advertises a very brisk 0-60 mph time . . . the sort of time which ( a few decades ago ) required a large sporty V8 engine.

  25. Doug Bostrom at 02:35 AM on 12 May 2022
    Why and How to Electrify Everything

    Eclectic, happy to answer.

    Our vehicle is rarely discharged below 1/5th of remaining capacity, usually charged only to about 90% so that "one pedal driving" is fully available (another absolute boon thanks leaping from the 19th to 21st century). We rarely fast charge. As well, this car (Bolt) doesn't fast charge above 55kW, which for one who cares about battery longevity is indeed a good thing. W/regard to regenerative braking, I've seen return to battery hitting 70kW but it's not a problem as these events are very short and don't  last long enough to expose imperfect cooling distribution in individual cells (due to engineering constraints on thermal management cells end up with a thermal gradient under prolonged high current in or out, which is not good due to pchem issues). 

  26. Flying is worse for the climate than you think

    I think that biofuel, properly sourced, is the obvious and most scalable short term solution to the carbon footprint of aviation. Both United and KLM have demonstrated transatlantic flights on pure biofuel. The airlines should be first in line for properly raised biofuel and should be given deadlines for conversion, or airports or countries could incentivize the conversion by giving better terminal slots, reductuions in landing fees, or higher scores in route bids for use of biofuel. New high speed land connections are of course feasible but as a rule they are anything but short term projects. Biofuels for long distance oceanic shipping ought to be second in line.

  27. Why and How to Electrify Everything

    Cold climate heat pumps:

  28. Why and How to Electrify Everything

    Indeed, Doug Bostrom @9 , it appears the commenter "Iain R" has not been keeping up with advances.    In his post @3 , he claims that 'clean' electricity from renewables is an unworkable proposition, owing to the grid becoming "uncontrollable".

    Iain R 's opinions are 10 years out of date.   The evidence is in the South Australian example [mentioned @5 above]  ~ where a big Tesla battery provides millisecond  matching of load demand on the electricity grid, along with frequency control.   All this is very desirable for electricity generators.   And that ability, combined with grid market arbitraging, has made the S.A. Tesla big battery so profitable for the company owning it, that it has quickly paid off the battery's capital cost.   And the company has even recently enlarged the battery by 50% .

    It is a marvel how obsolete ideas can linger on. 


    (B)  Slightly off-topic, Doug, but could you comment on how your car's (lithium?) battery battery is doing so well.  Is this despite you "abusing" it with rapid recharges and lots of regenerative braking? . . . or are you babying it:  with trickle charges, gentle accelerations, 20-80% charge cycles, and suchlike?

  29. Doug Bostrom at 09:02 AM on 11 May 2022
    Flying is worse for the climate than you think

    "Ghost Flights" can be thought of as a bright point of distinction as to whether governmental climate  change mitigation policy is working at anything roughly approaching an effectively systemic level. 

    To Adam's thoughts on "fixing flying," I'd add: accept that flying costs more than we're paying. As with other of our activities, the cost of flying is artificially low because we're burning a messy fuel from the past that we didn't make and pushing the result onto people in the future, with no plan or intent to pay back. For our immediate benefit, we're stealing the future from other people. 

    Air travel at today's cost to us is theft.

    When the dust settles, it's highly unlikely that a fully accounted air fare from point A to point B will be as strangely "cheap" as it is now, once theft is removed from the equation. A reformed thief accepts that muggings are no longer part of everyday living. Our habits and expectations will likely need to change. 

  30. Doug Bostrom at 08:42 AM on 11 May 2022
    Why and How to Electrify Everything

    "Spinning mass" indeed used to be a challenging replacement problem to solve, for keeping voltage and AC frequency stable on the grid. That's now a fully solved technical problem, and in fact when one thinks through the fundamental physics of the matter, notional "solid state" grid stabilization is inherently more effective than KE in massive rotors in generators, "slow" ramping of PE from steam and combustion throttling, moderator rod insertion/removal and the like. 

    Similarly it used to be the case that heat pumps were largely ineffective in even fairly "mild" temperatures. No more. 

    It's no wonder we get stuck in the past, at least a little bit. Personally I'm having a hard time adjusting my own head to progress. I'd never have believed only 10 years ago that I'd own an automobile capable of traveling 300 miles on a fundamentally squishy and historically unreliable pot of electrochemistry, but here I am today, with a four year old EV having 50,000 miles on the clock and no sign of degradation in the chemistry mess powering it.  And driving the thing makes me feel like I'm 16 again, for better or worse. It's far better than the Victorian-era tech I used have under the hood— in 2017 and 116 years after Vickie shuffled her mortal coil. 

    Things change and we must keep up!

  31. michael sweet at 01:06 AM on 10 May 2022
    Why and How to Electrify Everything

    Ianr @4,

    You claim that "with regard to heat pumps there is much misunderstanding and confusion betwen Coefficient of Performance and efficiency" but then do not explain what the confusion is.  You seem very confused about efficiency.

    To make it simple, for gas furnaces " High efficiency furnaces offer 90% or more AFUE." (that means for 100 joules of energy in the gas only 95 joules of heat is delivered to the room.) source.  By contrast, a heat pump can deliver 400 joules of heat for every 100 joules of electricity used.  In very cold weather current heat pumps deliver 250 joules of heat for every 100 joules of electriicity.  As shown in Norway, they can be used to heat any structure in any cold except perhaps in the Antarctic.  In ten years heat pumps will be more efficient.  Gas is so last century.

    Heat pumps save a lot of money over their lifetime but are more expensive to install.  Many people only look at the installation costs and not the lifetime costs so the government helps them to save money  by giving iincentives to reduce installation costs.

    Moderator Response:

    [BL] For everyone:

    Please note that you are responding to a user with the handle Iain R, not IanR. There is another user in the system with the handle IanR, but he has not been active for a while and is probably not the same person. Please pay close attention to user names.

  32. michael sweet at 00:57 AM on 10 May 2022
    Why and How to Electrify Everything


    Many peer reviewed articles have been written about an all renewable energy energy system.  For example see Connelly et al 2016.  Connnelly reverences at least 20 other all renewable energy plans.  Many more have been pubished since.

    I am not aware of any energy plans that include more than 5% of all energy coming from nuclear power.  Please ciite a peer reviewed article that uses nuclear power.  Williams et al 2021  was the last group that I am aware of that supported an important place for nuclear.  their 2021 paper says that renewable energ yill be cheapest.

    Abbott 2012 lists about 15 reasons why nuclear can never produce more than about 5% of all energy.  Can you tell us how you plan to get enough uranium for your wild scheme since all known reserves of uranium would only power the world for about 5 years.

  33. Why and How to Electrify Everything

    IanR , the other area I would like to get your opinion on, is the non-Wind / non-Solar type of low-carbon electricity generation.

    Geothermal seems to be "stuck in a hole" (excuse pun) and not going anywhere fast.  Nuclear fission seems almost  dead in the water, owing to huge costs and huge development delays ( though maybe Small Modular Reactors could come to the rescue here . . . but are currently at the pie-in-the-sky stage . . . as well as having the NIMBY problem ).  Fusion reactors of various sorts are still at the experimental stages, and are likely very many decades away from economic practicality.   And hydro-based generation is probably close to its upper limit of expansion.  And tidal-based generation suffers from its own economic problems.

    There doesn't seem to be much else going, in the low-carbon line.  One possibilty not yet discussed, is fuel-cell electricity generation, using bio-fuel such as ethanol or "electro-fuel" such as methanol.   Plane jetfuels need medium-chain hydrocarbons, such as bio-diesel equivalents.  But ships, automobiles (cars, trucks, heavy machinery) could do well on alcohols as fuel . . . provided that the researchers can come up with fuel-cells using cheap catalysts & robust internal membranes.   ~This could well be 10 or 20 years away.

    Fuel-cell electricity generation would clearly require a huge development of fuel sources . . . and (possibly?) might be very useful for vehicles and for electricity generation at locations of low population, and eventually be cheaper than storage batteries.

  34. Why and How to Electrify Everything

    IanR @3   : you may be the very person I can ask for your good opinion.

    I was recently watching the Youtuber "Potholer54" and his video "A Clean Energy Solution Embraced By Both Sides".  He discussed the large expansion of Wind/Solar electricity generation in Australia ~ in particular their state of South Australia.   On viewing the Australian "NEM" website -National Energy Market - (reporting real time generation figures) over a number of weeks, I saw that South Australia was mostly showing renewables as 40 - 95% of the state total (depending on time of day).  The non-renewable portion was supplied by CCGasTurbine generators.

    I was very impressed by the 90 or 95% achieved during the middle part of the day.   Apparently the grid stabilization is achieved by a lithium battery (Tesla) of 150 MW power (but only 194 MWh capacity) for a population of 2 million.  Two or three synchronous condensers have recently been added to the mix ~ but I don't know if they are absolutely necessary or just supply an emergency stabilization back-up for the big battery.

    Obviously this arrangement is not do-able to such a high extent, in many countries.  But it does seem to be working well.

  35. Why and How to Electrify Everything

    John S,

    with regard to heat pumps there is much misunderstanding and confusion betwen Coefficient of Performance and efficiency, although linked they are not the same. Efficiency starts at the power station where the fuel is burned, loses in generation, transmission and distrbution are about 60%.

    Air source heat pumps are not particularly efficient and they certainly are less effective than gas heating when it gets really cold. They do work, as long as the house is designed for them but retrofitting a house designed for gas or oil  heating is expensive and not economical in my view.

    If it were governments would not be mandating that gas boilers, after a certain date, will not be allowed for sale. (U.K. anyway) If they are better and cheaper that is what the general public will choose. No need for any laws.

  36. Why and How to Electrify Everything

    It is a fantasy that we can produce 'clean' electricity by renewables it simply will not work.

    The reason is basic and due to the nature of renewable generation, technically known as asynchronous, i.e. it is uncontrollable and grids need to be controlled to fine limits with regard to input and demand, i.e. they must be in balance at all times.

    Fossil fuelled generation is generally considered as back up for grids with large penetration of renewable generation, however it is much more than that, they provide the balancing of input and demand as they can modulate output mostly automatically. They are the backbone of any grid and remove that backbone the grid will not function.

    THE only possible solution is nuclear, unpopular as it is in many countries, but it is Hobson's choice for a reliable and non CO2 emitting electrical system.  It is not without problems as nuclear is unflexible generally so work will be required in that area, possibly with small modular recators.

    Renewables are a dead end!

    California claim 100% renewble generation at times but that is only possible by connection to neighbouring grids. It does not mean renewables are a solution.

  37. michael sweet at 11:40 AM on 7 May 2022
    Why and How to Electrify Everything

    John S.:

    When I Goggled "how cold can heat pumps work" I found this quote

    "In fact, heat pumps are now the best heating option just about everywhere on the planet. Below 0° Fahrenheit, heat pumps can still heat your home with more than twice the efficiency of gas heating or standard electric heating (such as electric furnaces and baseboard heaters). They’ve been tested and approved as far north as the Arctic Circle, and are popular options in very cold countries like Finland and Norway." my emphasis. source

    Please provide a reference to support your wild claim that heat pumps are not efficient in cold weather.  My source says they are still efficient but not as efficient as during normal weather.  Where I live heat pumps have an "emergency heat" switch for even colder weather.  I use it about 2 days every other year.  (My heat pump is in Florida and is designed to cool better than heat).  As heat pumps continue to be developed we can expect efficiencies to improve across the board.

    Most plans I have seen try to use as much district heating as possible because large installations can utilize energy more efficiently.  Heat pumps are recommended for people who are not able to obtain district heating.

  38. Why and How to Electrify Everything

    Don't electify where equivalent or better service can be provided in a way that uses less valuable electricity system capacity; e.g. building heating and cooling can can be accomplished directly via district energy systems from natural resources like the sun or deep water or waste heat or surplus power with just a little help from heat pumps and seasonal thermal enegy storage.  BTW air source heat pumps are not efficient at the very low temperature which is exactly where a lot of the heating is needed in the northern US and Canada and the heating peak demand could be about three times the current electricity system winter available capacity (my estimate for Ontario).  

  39. One Planet Only Forever at 07:08 AM on 7 May 2022
    What you need to know about carbon dioxide removal

    As a resident of Alberta, Canada, I can confirm that a major part of the problem is the regional popularity of leadership that makes up harmful misleading claims to excuse harmful pursuits of benefit.

    The Alberta leadersip has repeatedly claimed that reducing the emissions from fossil fuel burning related to the oil sands production and export by carbon capture and use, like injection of CO2 to produce more oil, is what the IPCC reference to carbon capture is all about.

    The article makes it clear that the IPCC CDR is not what the Alberta leadership claim it is. Reducing fossil fuel emissions is helpful. But ending those emissions is reqired along with CDR. And the means a future without fossil fuel being exported for burning, not a net zero production of fossil fuels for export. But few Alberta voters will learn about that. Or if they do encounter the correction they are likely to ignore or dislike the correction of understanding.

    A root of the problem appears to be the potential popularity of resistance to learning to be less harmful, especially if learning to be less harmful would appear to result a loss of status or benefits.

    It continues to amuse me that even the promoters of the need to develop a zero harmful carbon impact future avoid pointing out the obvious need for reduced energy demand to be a significant measure of progress and advancement.

  40. What you need to know about carbon dioxide removal

    During a long and somewhat tedious (March) trip across the U.S. Midwest between West Virginia and Denver, via AMTRAC, our spot check survey group visually  inventoried the farmland. Most fields were devoid of winter plant cover cropping which clearly indicates that Micorrhizal fungi, etc,  is not presently at work on the land. Without getting into details, it is clear that Midwestern soils play a role in holding plants erect, but provide little else without the customary chemical fertilizers essential to plant feedcrop production. Since 85% of global crop tonnage is fed to animals, one must wonder at the consequences we are probably facing in the not too distant future.

  41. What you need to know about carbon dioxide removal

    Biochar has to be "made" in an oxygen-less heating environment. The energy to make Biochar significantly undermines its utility as a soils-carbon sequesterer. Australian soil scientists, such as Christine Jones, points out that sequestering carbon in the soil is highly dependent upon the environmental conditions of humidity, soil temperature, application at the right time of solar angle and variety and density of soil microorganisms in the target plot. further, the sequestered carbon may "escape" its capture site due to atmospheric conditions at, or after, the Biochar is installed in the targeted soil plot.

  42. What you need to know about carbon dioxide removal

    There are a number of obstacles unaccounted for in these "remedies". Two, right off hand, come to mind: Farmers and Ranchers are not required to participate in "improvements", new techniques are "voluntary". Phytoplankton are being wiped out from ocean acidification which proceeds regardless of the effort to employ them in CO2 reversal schemes. 

  43. 2022 SkS Weekly Climate Change & Global Warming News Roundup #17

    I'm curious as to whether the article by Donald Brown was a rough first draft rather than a finished product. It contains a large number of typos and improper compositions that would have concerned an eighth grade English teacher.  ??  Is there another place to look for what may have been his actual published version?

  44. FLOATER: A Tool-Kit for evaluating Claims

    Melanie Trecek-King, the author of the "Thinking is Power" articles, talks about "Floater" in this Skeptical Enquirer Webinar, recorded on April 29, 2022:


  45. michael sweet at 12:19 PM on 30 April 2022
    Is Nuclear Energy the Answer?

    The headline from Bloomburg today was:

    "France’s Nuclear Shutdown Hits 50% of Reactors, Squeezing Supply
    Some 28 reactors in France are now offline for maintenance
    That’s keeping power prices high amid Europe’s energy crunch" my emphasis.

    So much for "always on power".  In the greatest emergency Europe has had in decades half the reactors in France are out of comission. 

    The new reactor at Flamanville is 16 years into a 5 year build (11 years overdue) with the current target date sometime in 2023.  Who would want to go further with that record?

    John: I suggest you come back when there is better news for nuclear power.

  46. Is Nuclear Energy the Answer?

    'France has temporally closed 4 nuclear power stations because of cracks and corrosion found near welds. That is about 13% of France's nuclear power. There is also a natural gas (methane) shortage this winter in the EU. Electricity prices are expected to rise. If there is a cold spell there will be difficulty dealing with it. Hopefully it will be windy so wind can help out.' (Michael Sweet, 280)

    Despite the unscheduled downtime, France is still getting about 60% of its power from nuclear, at about a third the carbon footprint of the UK, and a quarter that of Germany. At the moment, Germany's 64 GW of wind is running at 4% capacity, and its 39 GW of coal is running at 54 % capacity. The 4 GW of German nuclear closed on December 31st had no mechanical faults, and nor do the last 4 GW they plan to close at the end of this year. That's been running all day at 95% or more. The 1.8 GW closed in France in 2020 also had no problems, apart from being nuclear. The French Energy Ministry is now the 'Ministry of the Ecological Transition', and the minister, Barbara Pompili, is a former Green party member with a history of opposition to the industry. (Power data from '', which anyone interested in energy should have on speed dial.)



  47. From the eMail Bag: the Beer-Lambert Law and CO2 Concentrations

    Yes, that is a good page on Wien's Law. When I saw MA Rodger's comment, my first thought was "didn't I include that link in my previous comment?" - but I must have fogotten to add it. I was looking at it, at the time.

  48. Climate change will transform how we live, but these tech and policy experts see reason for optimism

    One of the most persistent bits of misinformation I see from those who incline towards accepting the reality of climate change is the notion that we should slow down the use of fossil fuels, period.

    The "period" meaning that we can use the same amount, just over a longer period and then all's well with the world.

    The fact that CO2 in particular is so long lasting and cumulative doesn't register. Climate is an incredibly complex subject yet the basic facts are so simple: with "friends" like that who needs denialists?

  49. From the eMail Bag: the Beer-Lambert Law and CO2 Concentrations

    Wikkipedia have a Wein's Law page (aka Wein's Displacement Law) which may assist in the explanation.

  50. From the eMail Bag: the Beer-Lambert Law and CO2 Concentrations

    Just to make the text from comment 25 a little easier to understand, here is an updated version of the Planck curve graph from comment 20 - adding 193K as a third line.

    Planck curves for 193K, 255K and 288K


    In this figure, you can see how the peak emission shifts to shorter wavelengths at higher temperatures - 15 μm at 193K, 11.4 μm at 255K, and 10.1 μm at 288K. That's what Wiens Law tells us.

    Notice that the 15 μm emissions are higher for 255K than for 193 K, and higher again for 188K - but the 15 μm wavelength is not at the peak for the latter two.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  Next

The Consensus Project Website


(free to republish)

© Copyright 2022 John Cook
Home | Translations | About Us | Privacy | Contact Us