Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  2033  2034  2035  2036  Next

Comments 101401 to 101450:

  1. The 2nd law of thermodynamics and the greenhouse effect
    darmobel "Until you have read these works as a minimum your knowledge and appreciation will be substantially less than mine." wow, it sounds really, really, conceited. Just to remind you, you're not talking in the name of Plank or Einstein or Maxwell. You're talking for yourself aginst the understanding of generations of physicists.
  2. Climate's changed before
    Re: averageguy (144) Welcome to Skeptical Science, wherein we debunk crap climate science, on both sides of the aisle. If you have an open mind and are here to learn (why else would you be here?), then Enter! This Door is always open. One thing I draw from your linked graphic is that it is from Alley's Central Greenland core. Thus, a timeline for a singular or regional location. It is considered an apples-to-oranges (i.e., "cherry picking") comparison to conflate localized data into global. The next thing to understand is that temperature variations over time from cores run the gamut over hundreds of millennia; it is rather unwise to focus on such a small window of time as presented in your graphic. Here's a bigger snapshot of time, showing the coupled relationship between temperatures and CO2 over the ice core record periods. You'll see that there are ample times one could focus on that would be markedly different from others: Returning now to the time period covered by your Alley graphic, look at this graphic showing the "sweet spot" of temperatures that has allowed mankind to develop a stable civilization (well, fairly stable): The interesting thing about the CO2/temperature record from ice cores (usually referred to as the paleo record) is that (as you refer to) natural variations, which are well-understood, were the dominant factor in climate change. However, the thing differing today is the massive slug of CO2 mankind has re-introduced into the carbon cycle. As a non-condensible GHG, CO2 is the Control Knob of Temperatures, capable of acting as feedback and forcing. In modern times, this means CO2 is driving temperatures up (with about a 40-year lag due to the thermal inertia of the oceans): We've pretty much eviscerated any chance of returning to glacial conditions for millennia. Indeed, there's these quotes from Dr Toby Tyrrell of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton, appearing in Science Daily:
    "Our research shows why atmospheric CO2 will not return to pre-industrial levels after we stop burning fossil fuels. It shows that it if we use up all known fossil fuels it doesn't matter at what rate we burn them. The result would be the same if we burned them at present rates or at more moderate rates; we would still get the same eventual ice-age-prevention result."
    and
    "Burning all recoverable fossil fuels could lead to avoidance of the next five ice ages."
    The Yooper
  3. It's not us
    #12: "the excess CO2 in question is located at the top of the lower troposphere" I can't find that particular line in the excellent RC article you reference. That article deals with CO2 effect saturation, a topic addressed here on SkS.
  4. The 2nd law of thermodynamics and the greenhouse effect
    Re #184 muoncounter you wrote:- "The difficulty with reading 'the originators' is that it's easy to miss one or two points." and :- "Thus Planck and Fourier were mistaken and the great and mighty damorbel stands alone." Indeed, from these one or two points in a translation you deduce that Planck was an aficinado of caloric theory. Um, er, do you have any thing else in support of caloric? As for poor old Fourier, he was living in a time that caloric had few rivals! Further you wrote:- "Yes, there are mistakes that pass through, but can damorbel find just one to recommend? " The best technique is to learn the fundamentals and see what the author writes, I don't know of an error free book. There is absolutely no point in following what you find in a book slavishly. For examples, do you subscribe to John Houghton's theory that you can calculate a planet's temperature on the assumption that it is a black body without the slightest justification? If you do then you are following indeed 'like a slave'.
    Moderator Response: [Daniel Bailey] You tread dangerous ground. Keep it clean and adhere to the Comments Policy. Any future examples of comments like this one will be deleted. Thanks in advance for your compliance!
  5. The 2nd law of thermodynamics and the greenhouse effect
    #179: "recommend you adopt my practice of reading original texts of those credited with being the originators of the science" The difficulty with reading 'the originators' is that it's easy to miss one or two points. For example, from Max Planck's The Theory of Heat Radiation: ... the state of radiation at a given instant and at a given point in the medium cannot be represented, as can the flow of heat by conduction, by a single vector ... And Jean Joseph Fourier'sThe Analytical Theory of Heat, wherein we find these entries: Notion and measure of the flow of heat Analytical expression of the flow in the interior of any solid. Measure of the quantity of heat which crosses an edge or side parallel or perpendicular to the base. This expression of the flow suffices to verify the solution But as we learned here, heat does not flow, only fluids flow. Thus Planck and Fourier were mistaken and the great and mighty damorbel stands alone. Yet when asked to produce a single textbook -- his choice -- so that a conversation could proceed with at least a common vocabulary, damorbel resorts to this bit of pure puffery: "my practice of reading the original texts"! On this thread and the prior 2nd Law thread, damorbel put forth enough of his views on thermodynamics and science in general to write his own textbook. Surely that would be a more rewarding endeavor than wasting his time here. Alas, textbooks are usually written by more than one author and are always reviewed. Yes, there are mistakes that pass through, but can damorbel find just one to recommend?
  6. The 2nd law of thermodynamics and the greenhouse effect
    Re #181 CBDunkerson you wrote "Horrible idea. We should go to Newton for the best science on gravity? Darwin for the best science on evolution? Fourier for the best science on the greenhouse effect?" Yes! Yes! Yes! And you hang your ideas (in #178) on Tyndall et al at the same time as you write:- "'Well according to this, people have been experimentally proving the existence of back radiation and greenhouse warming since Tyndall first did it in 1858'. That's over a hundred and fifty years of direct scientific practice saying you are wrong." This is extremely "flexible" (or selective) argumentation,don't you think? We have moved on from Kirchhoff, Planck and Einstein but not from Tyndall! Do please explain why you think Tyndall's interesting but minor papers should take precedence.
  7. The 2nd law of thermodynamics and the greenhouse effect
    Re #181 CBDunkerson you wrote "Horrible idea. We should go to Newton for the best science on gravity? Darwin for the best science on evolution? Fourier for the best science on the greenhouse effect?" Yes! Yes! Yes! But since your response does not identify the publications/authors I am supposed to be reading to grasp your position; your response is of little use. Do you mean that J. Houghton's idea that Earth's temperature calculation (and that of all other GHE scientists) based on a 'black body assumption' is superior to Kirchhoff's careful arguments? Really CBDunkerson, I suggest it is quite reasonable to ask for something better than 'a black body assumption' before supporting an economy shattering 'theory' of AGW!.
  8. The 2nd law of thermodynamics and the greenhouse effect
    Damorbel writes: "If you want to find 'the best knowledge' I cannot do better than recommend you adopt my practice of reading original texts of those credited with being the originators of the science in question." Horrible idea. We should go to Newton for the best science on gravity? Darwin for the best science on evolution? Fourier for the best science on the greenhouse effect? I think these examples show what nonsense that position is. Essentially you are saying that we should ignore everything which has been learned since and go back to the very first 'flash of inspiration' where a scientist had uncovered something new and was speculating about possible details and their implications. They invariably made many incorrect guesses and assumptions precisely because what they uncovered was so new. Yes, there is value in reading the original work, to see how they arrived at their conclusions. However, taking the earliest small steps in a new field as the "best knowledge" of that field over the results of decades and centuries of further research is pure upside down bizarro world madness.
  9. An Even Cloudier Outlook for Low Climate Sensitivity
    How can you mention clouds without mentioning heat transfer from the hydrologic cycle? Storm related, violent updrafts and downdrafts are the bane of aviators. Simpson mentions "hot towers" with ambient temperatures at hurricane tops of 10-18C above ambient at up to 18,000 meters in altitude, an altitude where CO2 and other greenhouse gases concentration are much lower than at ground level. From an engineering point of view, storms appear to be giant heat engines , with the heat source in the ocean and other sources of hot water or vapor, and the cooler heat sink in clouds. I have read estimates of a meter of sea water evaporating annually. This represents a mammoth amount of energy. Winds are powered by Coriolis forces of air moving to fill the missing updraft air and in the expanding air moving away from the updraft at cloud tops. -Or so it seems to me.
  10. It's not us
    I read this: "The second problem is that the excess CO2 in question is located at the top of the lower troposphere where it does not nourish any plants." Which was based on this: http://www.realclimate.org/index.php/archives/2007/06/a-saturated-gassy-argument/ But I think this was my misinterpretation. It's the "CO2 in question" meaning, the CO2 that contributes to heating, not "most' of the CO2. "Among other things, the new studies showed that in the frigid and rarified upper atmosphere where the crucial infrared absorption takes place, the nature of the absorption is different from what scientists had assumed from the old sea-level measurements" thanks.
  11. An Even Cloudier Outlook for Low Climate Sensitivity
    HR #50 RC topics are full of skeptical ACC challenges. I am not a skeptic but have had comments at RC deleted. One in particular I recall is where I drew a relationship between ACC denial and two other well established groups. Bottom line, I was off topic and deserved deletion. Sometimes, wake-up calls are needed.
  12. Stratospheric Cooling and Tropospheric Warming
    The condition (dQ about 0) requires a fast vertical circulation
  13. The 2nd law of thermodynamics and the greenhouse effect
    Re #178 CBDunkerson. Have you read Tyndall's papers, Arrhenius' paper? Have you studied the paper of Callendar? Do tell me about what you have read that convinces you so strongly.
  14. The 2nd law of thermodynamics and the greenhouse effect
    Re 177 Riccardo you wrote:- "But i do recognize the best knowledge available at the moment, easily found in thextbooks," If you want to find 'the best knowledge' I cannot do better than recommend you adopt my practice of reading original texts of those credited with being the originators of the science in question. For example, have you read Max Planck 'The Theory of Heat Radiation'; Albert Einstein papers on the quantum effect 1905, 1909, and 1917; G R Kirchhoff 'On the Relation Between the Emissive and the Absorptive Powers of Bodies for Heat and Light'. The really interesting thing about Planck and Einstein is that they freely acknowledge the merit of the work of their predecessors, Kirchhoff in 1862, Planck in 1901 and Einstein in 1905,1909 and 1917. Until you have read these works as a minimum your knowledge and appreciation will be substantially less than mine. I hope you enjoy them as much as I did. Oh, I nearly forgot J.C. Maxwell, a copy of his major work 'Theory of Heat' is available on line for about £6.29
  15. The 2nd law of thermodynamics and the greenhouse effect
    Damorbel, as I told you in another thread... if you want to prove the textbooks are wrong and you've uncovered the 'True science' you are never going to make your case by ranting on the internet. People will just look at the textbooks and say, 'Well according to this, people have been experimentally proving the existence of back radiation and greenhouse warming since Tyndall first did it in 1858'. That's over a hundred and fifty years of direct scientific practice saying you are wrong. You need to prove otherwise within the scientific community (aka, by publishing evidence to the contrary in science journals and having your findings validated) or you will just continue to be dismissed.
  16. We're heading into an ice age
    NQoA writes: "would you be kind enough to send me a couple of links to examples, pre 2005, were the IPCC or friends specifically stated that they expected the sea ice extent to increase, glaciers to increase or record cold temperature to occur post 2005." Wow are you ever dwelling in a fictional reality. How can you look at the frequent up and down short term variations of the data and believe that anyone was ever claiming that would suddenly switch to unidirectional changes... rather than saying that the long term trends would continue to be in the same direction? It's a ridiculous interpretation on its face. That said, there are countless examples of statements about continued variability. Since I don't know exactly who you consider to be 'friends' of the IPCC, let's go directly to the boogeyman in question; "Changes in ice sheets and polar glaciers: Increased melting is expected on Arctic glaciers and the Greenland ice sheet, and they will retreat and thin close to their margins. Most of the Antarctic ice sheet is likely to thicken as a result of increased precipitation." IPCC TAR WG II Chapter 16 overview "Whether the sea ice in the Arctic Ocean will shrink depends on changes in the overall ice and salinity budget, the rate of sea-ice production, the rate of melt, and advection of sea ice into and out of the Arctic Basin. The most important exit route is through Fram Strait (Vinje et al., 1998). The mean annual export of sea ice through Fram Strait was ~2,850 km3 for the period 1990-1996, but there is high interannual variability caused by atmospheric forcing and, to a lesser degree, ice thickness variations." IPCC TAR WG II Chapter 16.2.4.1 "Features of projected changes in extreme weather and climate events in the 21st century include more frequent heat waves, less frequent cold spells (barring so-called singular events)" IPCC TAR WG II Chapter 1.4.3.4 So there are the three specific things you wanted to see from before 2005... all in the IPPC Third Assessment Report released in 2001.
  17. The 2nd law of thermodynamics and the greenhouse effect
    damorbel "You seem to have a belief system that requires text books to contain 'the truth'". No darmorbel, this is your (ascientific) thought not mine. As I scientists i won't find the truth anywhere. But i do recognize the best knowledge available at the moment, easily found in thextbooks, from where we all should start. You missed this first step and took a weird path. This is confirmed by the rest of your comment and by the previous ones, you missed the first step of a deeper understanding of the current best available knowledge before trying the next step.
  18. The 2nd law of thermodynamics and the greenhouse effect
    Re 172 scaddenp you wrote:- "you must have precise definitions of terms like heatflow... When I ask for textbook, then I am wanting you to locate yourself within a coherent theory " That 'heat flowed' i.e. it was some kind of fluid, was the basis of the caloric theory; it fell to bits because no measurements showed that there was in fact anything flowing. I you really are interested you may find in a good library (they may have to order it for you) "The Caloric Theory of Gases - from Lavoisier to Regnault" by Robert Fox; OUP 1971. In this book you will find a fascinating history of 'theories' of heat and the controversy they caused; it really is most interesting. For the rest as soon as you dee the expressin 'heat flow' you should realise that the author is confused and doesn't understand the matter. (I may well have used it myself, it is such a seductive phrase!)
  19. Renewable Baseload Energy
    Nothing could illustrate the uselessness of micro generation in combating climate change more than the case of Germany. After spending an astonishing amount of money on PV, there are moves afoot to build 27 new coal fired power stations. The push is coming from the energy companies who clearly believe that is/will be a demand for electricity that all the micro generation in the world will not be able to meet: http://www.spiegel.de/international/germany/0,1518,472786,00.html
  20. The 2nd law of thermodynamics and the greenhouse effect
    Re #173 Riccardo you wrote:- "I see, textbooks are full of "wonky ideas"" You seem to have a belief system that requires text books to contain 'the truth'. But of course there are many books and scientific papers about theories (caloric, phlogiston, aether etc.) that have fallen by the wayside, How do you reconcile this fact with your (apparent) belief that books contain 'the truth'; even if only a scientific truth? What my teachers wanted me to do was to separate those ideas that were consistent with the (latest) scientific evidence. The best example in the current discussion is the requirement for believers in the GHE to accept thar the Earth emits (thermal) radiation 'like a black body and is the daft enough to continue by calculating the (pseudo) surface temperature on what they even admit is 'an assumption'*. How ridiculous can you get? Predicting doom on the basis of an assumption must surely be the ultimate unscientific activity. * Try page 2 of 'The Physics of Atmospheres' (3rd ed.) by John D Houghton, where he writes 'the left hand side [of the equation] [is] the radiation emitted by the planet assuming it behaves like a black body at temperature Te.' John D Houghton was a senior figure in the writing of at least the first two of the IPCC Assessment Reports, this is the so-called 'science' in text books about the GHE.
  21. Stratospheric Cooling and Tropospheric Warming
    Ebel, Mars 235/236 You are both right! The adiabatic lapse rate is simply set by the Cp of the gas and g, dT/dZ = -g/cp, see textbook extract at bottom of this post However, it’s also true to say that cooling is a function of pressure loss; the thing is that the pressure loss depends on g. For adiabatic expansion, The point is that the pressure at any given height is a function of g and gas properties, so the two are coupled. My understanding is that the real lapse rate differs from this due to latent heat, radiation, lateral mixing etc. (Extract from Elementary Climate Physics, F.W. Taylor (2005) sourced from Science of Doom)
  22. The 2nd law of thermodynamics and the greenhouse effect
    Re #166 Tom Dayton you wrote:- "If instead the matter is absorbing E and simultaneously emitting only 70% of E, then the matter's net change in energy is an increase of 30% of E (i.e., +E - .7E = +.3E). That last sentence is why the greenhouse gas effect does not violate the 2nd law of thermodynamics." But this does not represent the GHE 'science'. If the material is, as you say "emitting only 70% of E" then it is colder than the material supplying the incoming photons, of course its temperature will rise! Further you wrote;- "The temperature of the receiving matter has no influence on whether each of those particular air-sourced photons is absorbed. The surface matter blindly absorbs photons from both sources." Yes, that is true. But you mustn't you also recognise that the energy of the photons emitted (by the receiving matter) is a strict function of 'The temperature of the receiving matter'? And this is how the e Yet further you wrote;- "The fact that the source of some of that energy is really hot (Sun) and the source of some of the energy is kind of cool (air) has played no role. Photons do not carry source credentials." This is entirely at variance with observation, it is contrary to the basics of quantum physics, starting with Einstein's observation that the emission of electrons from an illuminated surface did not happen at all unless the light had a wavelength shorter (frequency higher) than a particular value. The energy of a photon is defined by the frequency of oscillation of its source, the equation is E = hf where 'h' is the Planck constant. The 2nd law comes in when two bodies have different temperatures. If the temperatures are the same both bodies emit photons with the same energy. If there is an intermediate reflecting suface or one body is much bigger than the other not all the photons will be absorbed, some of the photons will miss or be redirected by the (partially) reflecting surface, they may even be redirected back to where they came from. However the net result is the same, the high energy photons from the hotter body, when absorbed will increase the energy in the cooler body; the lower energy photons (absorbed by the hotter body) will not be able to compensate the hotter body for its loss of energy contained in the (high) energy photons it has emitted; so the temperature of the cooler body rises and that of the hotter falls until they are equal. In the case of a planet the (warm) surface emits photons; if there is nothing in the atmosphere that absorbs/emits photons they go to deep space at 2.7K. Deep space emits photons at 2.7K that is how we know it is at 2.7K; some of these deep space photons are absorbed by the Earth's surface. If there is a GHG in the atmosphere it emits photons at, let us say 255K to deep space and absorbs some at 2.7K. There is a steady state, the temperatures are stable. The lower atmosphere (288K) will absorb some of the photons emitted by the GHGs (255K) but we know that the balance of temperatures will not rise because the atmosphere would then become more stable because convection currents would be suppressed. When considering the effects of radiation on the atmosphere you must not forget that there is one heating/trapping effect that does what I describe and is plain for all to see; it is the formation of the stratosphere due to the absorption of solar UV by O2 and O3; the consequent rise in temperature causes a classical inversion which stops convection, greatly reducing the turbulence found there. If there really was a rise in temperature due to a GHE, it would also show itself by producing an inversion.
  23. Climate's changed before
    To look at the chart below and claim we are a primary driver of climate is nonsense. The next time the climate turns cooler - are we supposed to retool again to produce massive emissions of CO2? http://jonova.s3.amazonaws.com/graphs/lappi/gisp-last-10000-new.png
  24. An Even Cloudier Outlook for Low Climate Sensitivity
    Archisteel I put my laziness to one side for a while to read the Trenberth paper (linked in #13). I got a question on that and it's relation to Dessler's method. Hope it ain't too dumb or skeptic or whatever. I'm really unsure whether it's a valid question but hey no harm just jumping in. Can I ask a dumb question? Does the changing atmosphere-ocean heat flux during ENSO make a difference to the scatterplot in Desslers paper? My uneducated climate science brain says it'll introduce a bias to the scatterplot but I don't see anywhere in the paper where it says it's been accounted for? Is the magnitude of the recharge and discharge of heat in the tropical Pacific Ocean large enough to make a difference? I get the feeling from the Trenberth paper that it is.
  25. Medieval Warm Period was warmer
    If you look at this site : http://www.co2science.org/data/timemap/mwpmap.html it appears to me that the MWP was worldwide a warm period and not limited to the northern part of the globe or am i missing something?
  26. Stratospheric Cooling and Tropospheric Warming
    @ mars at 19:52 PM on 13 December, 2010 This is not true. The cooling does not follow from the increase in potential energy, but from the pressure decrease during rapid ascent.
  27. The 2nd law of thermodynamics and the greenhouse effect
    darmobel oh, I see, textbooks are full of "wonky ideas", so we need to start from scratch to invent new science. It sounds great, we're going to get the Nobel price for this. Just a bit conceited but, who knows, it might work. Did your teacher also tell you why you should question textbooks? Because they're full of "wonky ideas" or because it's the process required for a deeper understanding? Probably this discussion should be moved to a different thread, something like "new ideas for the new millennium science" and continue here with the wonky old science.
  28. Ice data made cooler
    archiesteel #41 When you say "bad science", are you referring to badly intended ideas, or simply ideas containing error? Considering how many people died for "bad science", whether it had to do with test pilots crashing, rockets that blew up on the launch pad, bridges that colapsed etc., it appears that trial and error makes up an important part of the scientific process. All this is getting way off topic, so to brings things back on track, I believe the issue had to do with some minor details surrounding a climate model. Even if the model never incorporates them, it isnt a bad idea to know whether some variables should or should not be ignored. This can only provide more confidence in the model, not less. On the otherhand, there is nothing to stop someone from extending the investigation (behind the scene if deem necessary) and when this issue is clear, take the steps necessary to make the appropriate modifications. I am not sure what is "bad" about that.
  29. An Even Cloudier Outlook for Low Climate Sensitivity
    HR: "Checking the bible to see what's the right and wrong thing to say isn't to everybodies taste." Again, a provocative statement. You complain, but at the same time provoke.
  30. An Even Cloudier Outlook for Low Climate Sensitivity
    HR: "I don't worry about the caliber of what I say, it's surprising how quickly somebody here will jump all over you correct you when they think you're wrong. " Why do you find that surprising? If you hadn't noticed there is a political campaign to undermine science, climate science in particular. Your screen name is provocative, without you yourself making a comment!
  31. The 2nd law of thermodynamics and the greenhouse effect
    damorbel - the theory of thermodynamics is set down as a large coherent body of knowledge and as a mathematical model, built up from the ground of measurement axioms. Within the body, you must have precise definitions of terms like heatflow on which the mathematics depend. The theory gives you the power to predict experiments which for a textbook case is verified countless times. When I ask for textbook, then I am wanting you to locate yourself within a coherent theory, so I can match terms into the mathematical framework. That gives us a basis for definition and also for discussing the foundational experimental work that the mathematics models. If you are doubt the theory of thermodynamics and present your own eccentric interpretations, then lets find the point of departure from the standard work. I'm used to Callen and derivatives but also more foundational works. What is your foundation?
  32. Renewable Baseload Energy
    @402 actually thoughtfull Nonsense of the first order. Climate is not going to be saved by the well heeled indulging in micro generation. Not now, not in ten years, not in 20 years, not in 50 years and not in 100 years. Never ever. Period. The climate problem is an industrial problem and requires solutions on an industrial scale - and quickly. Individuals do not build GW scale power stations - but that is what is needed. The US deployed 140 MW of PV in the first 11 months of 2010 and over 6000 MW of new coal. Assuming a generous 20% capacity factor for PV and 80% for coal, it would take 28 years of PV deployment at this rate to equal the output of just one 1GW coal fired power station. This is the harsh reality that the purveyors of the micro generation nonsense would rather hide. You cannot solve the climate problem without getting rid of coal. Micro generation will NEVER get rid of coal. Maintaining otherwise is sheer fantasy - backed by no evidence whatsoever. You either want to tackle the climate problem or you don't ......
  33. An Even Cloudier Outlook for Low Climate Sensitivity
    "Checking the bible to see what's the right and wrong thing to say isn't to everybodies taste. I'm much happier to jump in and be shown to be wrong. " I think John would be first to tell you, this site ain't the bible. It's a resource. A damn good one. You should try it some time.
  34. The 2nd law of thermodynamics and the greenhouse effect
    #170, damorbel, now you're getting sloppy. You actually you can't find whatever you want in a textbook. I challenge you to find one that explicitly states or implies that the greenhouse effect is inconsistent with the second law. The equations will always say the same thing (pretty much along the lines of Tom's post above). It's not even that complex...just an energy budget. People do the same calculations when they balance their checkbook. Freedom of opinion is good, and you're welcome to it. But in science talk is cheap. If you are going to dismiss centuries of painful experiment, careful theory and thorough debate out of hand, then I am afraid the onus is on you to actually redo the experimental and theoretical work yourself. Only then will you be have something to contribute. Good luck with that.
  35. Stratospheric Cooling and Tropospheric Warming
    Re my comment at 228 It has just occurred to me that of course work is done when a parcel of air is lifted to a higher altitude which must be equal to MGH. That is Mass X Gravity X Height so that means the temperature drop per KM will work out as the same number as G provide of course the air is not saturated. This must be true for any planet.
  36. The 2nd law of thermodynamics and the greenhouse effect
    Re #165 Riccardo you wrote:- "As I alread said, check any textbook. Or you think you know better than textbooks?" I'm quite sure you can find whatever you want in a textbook, lots of 'scientific' theories are published in text books, there many many books published with wonky ideas, a sure sign is when there is no evidence presented, typically 'heat is energy in transit' which by any standards is a meaningless, self-defining statement. One of the benefits of my education was the poor view taken by my teachers of the availble textbooks; we were encouraged to question all matters and our teachers responded (sometimes!) to challenges. scaddenp, this response should cover your #164 also ("This discussion would manage a great deal less misinterpretation if using an agreed text book").
  37. The 2nd law of thermodynamics and the greenhouse effect
    @ archiesteel: you can disagree with me on this subject but I refuse to turn the talk into a row.
  38. Ice data made cooler
    @RSVP: I accept your admission that you have indeed no credibility on the matter, and have lost the argument. The question is, after being shown wrong so many times, why are you still here re-hashing the same old debunked arguments? Unlike wine, bad science does not get better with age...
  39. An Even Cloudier Outlook for Low Climate Sensitivity
    52 archiesteel *sigh* I don't worry about the caliber of what I say, it's surprising how quickly somebody here will jump all over you correct you when they think you're wrong.
  40. An Even Cloudier Outlook for Low Climate Sensitivity
    "There exists the search function in the upper left of each page as well as the Arguments page. I used both myself for more than a year before commenting here for the first time." Checking the bible to see what's the right and wrong thing to say isn't to everybodies taste. I'm much happier to jump in and be shown to be wrong.
  41. Stratospheric Cooling and Tropospheric Warming
    addition to #176 The same pressure difference = same number of molecules 200 mbar - about 11 km altitude Pressure difference across the height of an air layer with CO2 in which the initial intensity of a vertical infrared beam to 1 / e is dropped (Lambert.Beer) The Comparing the two charts above give the narrow spike at 15μm (= 666cm-1). There, is much absorbed, emits a lot, but according to the temperature. Therefore, the bright peak due to the narrow tip of the ozone area.
  42. An Even Cloudier Outlook for Low Climate Sensitivity
    @HR: "The first thing I ever posted on RC was deleted. Same was true at Rohm's website." If it was of the same caliber as the stuff you post here, I can't say I'm surprised, or even disapprove. As the moderator indicated, there's plenty of ways for newcomers to learn the science - not that you are a newcomer by any stretch of the imagination...
  43. An Even Cloudier Outlook for Low Climate Sensitivity
    HR #49 - again, the article doesn't say Lindzen fiddled or cherrypicked. It says the way he analyzed the data left it open to fiddling or cherrypicking. He could have just chosen a random start and end point, but 'fiddling' with the data to choose a different start and/or end point would give a different result. The method is what's being criticized, not necessarily how he used it. muon #46 - if you argue that some factor besides CO2 is causing warming (like a cloud 'internal forcing', in Spencer's case), that's how you get away with low sensitivity and the 0.8°C warming thus far. I'm not sure how Lindzen explains it - frankly I don't think he does.
  44. Stratospheric Cooling and Tropospheric Warming
    @ Chris G at 08:32 AM on 13 December, 2010. Sorry my English is not good (automatic translation) It results in the following outline of the greenhouse effect in 5 points: 1. The atmosphere is divided into two parts, in essence, bottom the troposphere with a lot of convection, where the weather is and where we live, and top the stratosphere without convection, with a possible move the border between the two spheres. 2. The temperature gradient in the troposphere is (almost) constant - even when changing the thickness of the troposphere. This consistency is result of convection. 3. The almost constant optical thickness of a changing stratosphere. This constancy is due to radiation and is due to the scaling (scaling) of the radiation transport equation for change in optical thickness with change in concentration of CO2. 4. If the temperature gradient exceeds a certain threshold, the air can not stay calm and stratification becomes unstable - and the convection is the characteristics of the troposphere 5. In the steady state (ie, even though time passes, the state no changes) does mean the heat of the earth just as great as the heat absorption - would otherwise be the temperatures change constantly. But this would contradict the stationarity. These 5 points provide a basic sensitivity of the average surface temperature as a result of changes in concentrations of CO2. Addition: The thicker troposphere has a greater temperature difference between top and bottom, and this greater temperature difference is so distributed to warming bottom and cooling top, that the total radiation of the Earth is equal to the total absorption.
  45. It's only a few degrees
    If you take a tray of ice cubes and let them warm until they are partially melted, then they will be at a balance point where only a small change in temperature will make them either all melt or all freeze. The Earth is also partly ice and partly water, at a similar balance point.
  46. An Even Cloudier Outlook for Low Climate Sensitivity
    47 archiesteel The first thing I ever posted on RC was deleted. Same was true at Rohm's website. In fact I got into an email exchange with Rohm were he used exactly your reasoning. But how do you expect people entering the debate to know "the same old debunked "skeptical" argument" from a legitimate concern or question? As you say RC can do what they want. And like you I have no problem with them alienating people.
    Moderator Response: [Daniel Bailey] There exists the search function in the upper left of each page as well as the Arguments page. I used both myself for more than a year before commenting here for the first time.
  47. An Even Cloudier Outlook for Low Climate Sensitivity
    dana1981 & dhogaza "it criticizes the method they used as one which can be fiddled to cherrypick convenient starting or ending points." Cherrypicking suggests intent (in the fiddling). Can you accidentally cherrypick? I suppose as long as you both think Lindzen is an honourable guy (just his method is weak) then I guess everything's OK.
    Response: "Can you accidentally cherrypick?"

    Absolutely. It's called cognitive bias.
  48. Philippe Chantreau at 14:43 PM on 13 December 2010
    The 2nd law of thermodynamics and the greenhouse effect
    Damorbel, although I brought up the subject, I don't want to be picky on words to the extreme. I think you make some valid points but I don't see that they are worth an argument. In the principles, I find nothing on which we disagree. If you don't like "flow", how about "net energy transfer"? As long as we know what our words mean, we can communicate. The problem with G&T associated blog discussions is that too many people use heat when they mean thermal energy, or energy, and do not realize that there is a difference between net and other energy transfers. Then they create a 2nd law violation where there isn't any. It matters little regarding the subject at hand. Tom summarized things rather well. My point was about what I see as an intrinsic inconsistency in Awol's reasoning. One can not say "I admit that there is energy transferred between the atmosphere and the surface" and at the same time deny that this makes the blackbody temp of the surface higher than it otherwise would be. Now, that would seem to be a true violation of the 2nd law! Whether or not it can be "directly" measured (whatever Awol meant there) would be a function of the measuring equipment, not of thermodynamics. As long as the net energy transfer is still in the right direction, there is no violation.
  49. An Even Cloudier Outlook for Low Climate Sensitivity
    I'm gonna be honest sometimes I think RC crosses the line with their moderation and inline comments...
  50. How to explain Milankovitch cycles to a hostile Congressman in 30 seconds
    http://www.seas.harvard.edu/climate/seminars/pdfs/Crowley_Hyde_2008.pdf 3.7W/m2 (well lets say 3.5-4W/m2) - no sensitivity involved in this number at all. These are sum of direct forcings from anthropogenic emissions. Read that section of the IPCC carefully. Number matches pretty much the measurement from Evan 2006. There are two parts to acceptance of milankovitch theory. 1/ there is the observation that ice-age matches the milankovich forcings at 65N to an extraordinary degree. If milankovitch forcings are not involved, then there is a major problem explaining the observations. 2/There is the explanation (models) explaining how an orbital forcing with a very small global forcing value can produce large-scale global climate change. I would say 1/ is incontrovertible and that the broad features of 2/ are well established. There are however numerous detail aspects of 2/ that remain active research areas. I would also say that none of the problems in the details are relevant to the question of climate over next 100 years. The feedbacks are very slow and in the case of the all-important GHG feedbacks, completely overwhelmed by human emissions.

Prev  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032  2033  2034  2035  2036  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us