Enter a term in the search box to find its definition.
Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).
Home Arguments Software Resources Comments The Consensus Project Translations About Support | |||||
Latest Posts
|
Archived RebuttalThis is the archived Advanced rebuttal to the climate myth "It's not bad". Click here to view the latest rebuttal. What the science says...
Global Warming ImpactsThe 2007 IPCC Fourth Assessment Report (AR4) summarizes the magnitudes of impact of various degrees of warming here, and graphically in Figure 1, relative to ~1990 temperatures (~0.6°C above late 19th Century temperatures).
Some adverse impacts are expected even before we reach the 2°C limit, such as hundreds of millions of people being subjected to increased water stress, increasing drought at mid-latitudes (as we recently discussed here), increased coral bleaching, increased coastal damage from floods and storms, and increased morbidity and mortality from more frequent and intense heat waves (see here), floods, and droughts. However, by and large these are impacts which we should be able to adapt to, at a cost, but without disastrous consequences. Once we surpass the 2°C limit, the impacts listed above are exacerbated, and some new impacts will occur. Most corals will bleach, and widespread coral mortality is expected ~3°C above late 19th Century temperatures. Up to 30% of global species will be at risk for extinction, and the figure could exceed 40% if we surpass 4°C, as we continue on the path toward the Earth's sixth mass extinction. Coastal flooding will impact millions more people at ~2.5°C, and a number of adverse health effects are expected to continue rising along with temperatures. Reasons for ConcernSmith et al. (2009) (on which the late great Stephen Schneider was a co-author) updated the IPCC impact assessment, arriving at similar conclusions. For example,
Smith et al. updated the 2001 IPCC report 'burning embers' diagram to reflect their findings (Figure 2). On this figure, white regions indicate neutral or low impacts or risks, yellow indicates negative impacts for some systems or more significant risks, and red indicates substantial negative impacts or risks that are more widespread and/or severe. They have grouped the various climate change consequences into 'reasons for concern' (RFCs), summarized below.
All of these reasons for concern enter the red (substantial negative impact, high risk) region by 4°C. Aggregate impacts are in the red region by 3°C, and some types of concerns are in the red region by 1°C. For more details we also recommend Mark Lynas' book Six Degrees, which goes through the climate impacts from each subsequent degree of warming, based on a very thorough review of the scientific literature. A brief review of the book by Eric Steig and summary of some key impacts is available here. National Geographic also did a series of videos on the Six Degrees theme, which no longer seem to be available on their websites, but which can still be found on YouTube. This is Why Reducing Emissions is CriticalWe're not yet committed to surpassing 2°C global warming, but as Watson noted, we are quickly running out of time to realistically give ourselves a chance to stay below that 'danger limit'. However, 2°C is not a do-or-die threshold. Every bit of CO2 emissions we can reduce means that much avoided future warming, which means that much avoided climate change impacts. As Lonnie Thompson noted, the more global warming we manage to mitigate, the less adaption and suffering we will be faced with in the future. Realistically, based on the current political climate, limiting global warming to 2°C is probably the best we can do. However, there is a big difference between 2°C and 3°C, between 3°C and 4°C, and anything greater than 4°C can probably accurately be described as catastrophic, since various tipping points are expected to be triggered at this level. Right now, we are on track for the catastrophic consequences (widespread coral mortality, mass extinctions, hundreds of millions of people adversely impacted by droughts, floods, heat waves, etc. But we're not stuck on that track just yet, and we need to move ourselves as far off of it as possible by reducing our greenhouse gas emissions as soon and as much as possible. There are of course many people who believe that the planet will not warm as much, or that the impacts of the associated climate change will be as bad as the body of scientific evidence suggests. That is certainly a possiblity, and we very much hope that their optimistic view is correct. However, what we have presented here is the best summary of scientific evidence available, and it paints a very bleak picture if we fail to rapidly reduce our greenhouse gas emissions. If we continue forward on our current path, catastrophe is not just a possible outcome, it is the most probable outcome. And an intelligent risk management approach would involve taking steps to prevent a catastrophic scenario if it were a mere possibility, let alone the most probable outcome. Climate contrarians will often mock 'CAGW' (catastrophic anthropogenic global warming), but the sad reality is that CAGW is looking more and more likely every day. But it's critical that we don't give up, that we keep doing everything we can do to reduce our emissions as much as possible in order to avoid as many catastrophic consequences as possible, for the sake of future generations and all species on Earth. The future climate will probably be much more challenging for life on Earth than today's, but we still can and must limit the damage. Advanced rebuttal written by dana1981 Update July 2015: Here is a related lecture-video from Denial101x - Making Sense of Climate Science Denial
Additional video from the MOOC Interviews with various experts
Updated on 2015-07-05 by pattimer. |
THE ESCALATOR |
|||
© Copyright 2024 John Cook | |||||
Home | Translations | About Us | Privacy | Contact Us |