Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Archived Rebuttal

This is the archived Basic rebuttal to the climate myth "Climate is chaotic and cannot be predicted". Click here to view the latest rebuttal.

What the science says...

Weather is chaotic but climate is driven by Earth's energy imbalance, which is more predictable.

One of the defining traits of a chaotic system is 'sensitive dependence to initial conditions'. This means that even very small changes in the state of the system can quickly and radically change the way that the system develops over time. Edward Lorenz's landmark 1963 paper demonstrated this behavior in a simulation of fluid turbulence, and ended hopes for long-term weather forecasting.

However, climate is not weather, and modeling is not forecasting.

Although it is generally not possible to predict a specific future state of a chaotic system (there is no telling what temperature it will be in Oregon on December 21 2012), it is still possible to make statistical claims about the behavior of the system as a whole (it is very likely that Oregon's December 2012 temperatures will be colder than its July 2012 temperatures). There are chaotic components to the climate system, such as El Nino and fluid turbulence, but they all have much less long-term influence than the greenhouse effect.  It's a little like an airplane flying through stormy weather: It may be buffeted around from moment to moment, but it can still move from one airport to another.

Nor do climate models generally produce weather forecasts. Models often run a simulation multiple times with different starting conditions, and the ensemble of results are examined for common properties (one example: Easterling 2009). This is, incidentally, a technique used by mathematicians to study the Lorenz functions.

The chaotic nature of turbulence is no real obstacle to climate modeling, and it does not negate the existence or attribution of climate change.

Updated on 2010-09-08 by chuckbot.



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us