Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  2403  2404  2405  2406  2407  2408  2409  2410  2411  2412  2413  2414  2415  2416  2417  2418  Next

Comments 120501 to 120550:

  1. Berényi Péter at 10:48 AM on 22 April 2010
    Tracking the energy from global warming
    Well, I think I have found the solution. OHC reconstructions before mid 2003 are simply wrong. Otherwise satellite TOA energy imbalance measurements have low accuracy but reasonable precision while ARGO OHC measurements are just the opposite. Therefore I have calculated the integral of CERES FLASHFlux net TOA radiation imbalance between the fourth quarter of 2003 and third quarter of 2009. The linear component of this integral is arbitrary due to low precision. So I have calculated a least square fit linear approximation to the difference of the integral above and the NODC OHC reconstruction for the same period. It gives the correct offset for TOA net radiation imbalance. With this correction we get the graph below: The match is pretty good. I think the fluctuations of OHC around the TOA energy accumulation curve are not real, it's just measurement noise. Thermal energy content of the climate system has decreased in this 6 years long period at a 0.19 × 1022 J/year rate. It corresponds to a -118 mW m-2 radiative imbalance at TOA.
  2. The significance of past climate change
    RE#36 garythompson, #37 Riccardo Two things: From eyeballing the adapted "CO2 science" graph (with my ruler on the monitor I get 0.27 deg warmer in the MWP than today based on matching the red peak to the blue peak so I don't know how they got that. But when I quickly read over the journal paper as far as I can tell it was incorrect method anyway to interpret figure 2b or at least to compare it to modern times as they author's state a few things: ...reconstruction suggests that at least during the Medieval Warm Period, and possibly the preceding 1,000 years, Indonesian SSTs were similar to modern SSTs....Contrary to the Indonesia SST reconstruction, however, the Northern Hemisphere temperature reconstruction does not estimate temperatures as warm as modern at any time during the past two millennia. The author's then continues to say: We note that the high-amplitude variations resulting fromthese hypothesized changes in G. ruber seasonality also preclude accurate estimates of the rates of SST change in the past and a meaningful comparison to the rate of SST increase during the past decade. Reading this, makes me instantly skeptical of the claim at "CO2 Science" that the Medieval Warm Period was warmer than the Current Warm Period. I infer that they intentional (not just that they can't read graphs) with their lack of transparency over how they interpret the science.
  3. HumanityRules at 09:53 AM on 22 April 2010
    Where is global warming going?
    40.GFW This is a review paper on sea level rise. I'd draw your attention to table 1 on page 7. Most of the relevant references to the original data are in here.
  4. HumanityRules at 09:43 AM on 22 April 2010
    The significance of past climate change
    Few comments. It seems fairly straightforward to me but I supposed I've been following the science for a year or so. As you say it depends on audience and what you can assume about them. One thing that jumped out is that you switch between energy/heat/temperature alot. You could think about just talking about one of them. I think the clearest is talking about energy building up in the system. I don't know whether by sticking to one term it makes the ideas flow better. With one line to at the start or end to say that energy build up = rising temperatures.
  5. The significance of past climate change
    Keenon350: I would be very wary of David Wasdell. He is an odd example of someone who uses denialist logic and tactics on the opposite side - to claim that climate scientists are all underestimating the scale of the problem and we are all going to die tomorrow. He has repeated classic denialist rubbish in the past while putting the opposite spin on it - like that climate models don't include the role of water vapour (utter nonsense). He also frequently says misleading things about his CV to suggest that he is a climate scientist when in fact he is a psychotherapist. After he accused the IPCC of political corruption in the New Scientist (or rather Fred Pearce did on his behalf, quoting him) a letter "From the co-ordinating lead authors of Working Group 1 of the IPCC Fourth Assessment Report" signed by 20 major climate organisations was posted in protest, pointing out major falsehoods in Wasdell's claims. It can be viewed here: http://www.newscientist.com/article/mg19325960.900-climate-with-care.html
  6. The significance of past climate change
    scaddenp, Thanks for the help on that!
  7. Flowers blooming earlier now than any time in last 250 years
    michael sweet at 04:54 AM, firstly your Australian report link doesn't work. Secondly, for Spring to occur the soil needs both warmth and moisture. The warmth is primarily driven by lengthening hours of daylight which AGW or no AGW, are not changing. The moisture, in situations not subject to irrigation as many flowers may well be, is a function of rainfall which is highly variable both over short terms, but more importantly over longer terms as well as identified by the PDO, IPO, AMO, IOD etc. etc. which cycle over terms of perhaps six or seven decades, certainly longer than the length of time some reports use to establish and extrapolate AGW trends. Even with the graph First Flowering Index used for this topic, data from 250 years ago show the flowering was close to present day timing from which it went backwards for a considerable length of time. Just using the graph it is impossible to determine what is "normal" and what is not. As was mentioned in an earlier reply, the difference may will be due to variations in rainfall. As I also mentioned earlier, little can be drawn from the graph unless the main variable, rainfall, is incorporated or plotted against it and until that is done nothing has been proved. With regards to the 20% reduction in rainfall for Australia, 20% against what benchmark. 20% against the period of the late 1900's, or the late 1800's? What period of time represents "normal" rainfall for Australia? What information is available tends to suggest that "normal" is generally drier than what was experienced in the second half of the 1900's, hence calculations for irrigation schemes, water supply storages, etc were based on unusual rather than normal rainfall patterns. Time will tell, but from the limited information available and reconstructions of some of the longer term cycles mentioned, there are indications that the trend is positive. The big guess is whether any supposed changes forced by additional CO2 are sufficient to overwhelm those natural cycles, and at the end of the day, that is what they are, guesses and theories.
  8. The significance of past climate change
    "On the contrary, the past tells us that climate is highly sensitive to the CO2 warming we're now causing." I would suggest not using words like "highly". That word has little scientific value.
  9. Models are unreliable
    cloneof, i'd like to add that, as a rule of thumb, when a paper is ignored by the other scientists you can safely assume that it is considered of no value, not even worth of a reply or a quote.
  10. Models are unreliable
    cloneof, well, it's hard to make any comment on a paper if you do not give a reference. Assuming it's J. Clim. 2008, 21, 5624, it has nothing to do with models. It's on the empirical (mainly from satellite data) determination of feedback operation.
  11. The significance of past climate change
    "One more question. I did not know that ice cores could reveal solar activity. What in the frozen ice gives us that information? " C14 and Be10 production are proxies for solar activity. I believe Be10 is used in ice core.
  12. The significance of past climate change
    Being engineers I’m sure at least one asked to see a graph of atmospheric CO2 concentration verses temperature for our planet. Since such a graph does not exist how were you able to explain that to your audience? You could point out that over a very short period of time mankind has removed and burned an enormous quantity of fossil fuels that had been comfortably buried for, roughly, the past 500 million years of earth history. I think if you can graphically show an estimate of how much fossil fuel by weight has been burned since the industrial revolution and compare that with the rise in atmospheric CO2 concentration over the same period, it might convince some. Past climate change is used to help us understand what changes we will likely see for the future. When climate has changed in the past scientists have struggled to understand the cause. This time the cause is obvious. One more question. I did not know that ice cores could reveal solar activity. What in the frozen ice gives us that information?
  13. The significance of past climate change
    garythompson - Mann et al 2009 for more on the latest data and analysis of MCA, including causes. All data and programs available in supplementary materials so you can reproduce their results. thingadonta- rates. The "Heinrich" events as we moved out of last ice age look to have dramatic temperature swings in the scale of decades. However, we have no reason to believe that such swings are feasible in an interglacial from natural causes.
  14. Ocean acidification: Global warming's evil twin
    I don't disagree with any of the statements in this paper but I do take issue with the graph. I've just read some very detailed arguemtnts refuting the inaccuracies in Ian Plimer's book. One of the major concerns wah his improper use of graphs. I think it behooves us to also take care with the graphs presented. If you look at the graph presented herein, supposedly showing acidification of the ocean and increasing CO2 (present level is I believe 380 ppm) this graph does no such thing. The graph should reflect the text and vice versa. A small point perhaps but but we should be consistent.
    Response: The purpose of Figure 1 is to show that in the past, when CO2 changed, pH levels changed accordingly. I think that's fairly clearly explained in the preceding paragraph.
  15. Models are unreliable
    Riccardo I was talking about paper released in 2008 by Spencer and Braswell that discussed a potential positive feedback bias caused by cloud variability. The paper makes a strong claim how this bias basicly makes the models show too much positive feedback. The link you gave me talks about one of hi's un-peer reviewed blog posts how PDO would affect climate. See that posts comment number 171. To this day I have not seen a debunking article nor any response from the modelling community about this paper. Considering this paper was released in the pretigius Journal of Climate and even Piers Forsters couldn't but give him a green light, I must wonder.
  16. Models are unreliable
    cloneof, not sure about which paper you're refering at, but take a look at this RealClimate post.
  17. The significance of past climate change
    garythompson, in the original fig.2b the line labeled "1997-2007 mean annual SST" is higher than any other line for the whole period shown. So, when co2science says that following the paper it was 0.4 degree warmer, it is blatantly false. You may be right that this is not a lie, they possibly can't read a graph.
  18. Models are unreliable
    Just asking around the people. Does Spencer & Braswell 2008 affect the credibility of the models how? I have been asking numerous people around and some of my more skeptical friends seem to wave this around and it appears to make some solid points. Anyone know how to answer to this one?
  19. michael sweet at 04:54 AM on 22 April 2010
    Flowers blooming earlier now than any time in last 250 years
    Johnd, It is good to see that we agree that soil moisture is tracked. Scientists have certainly considered what the effect of AGW is on soil moisture. I have not seen that data, perhaps it is contained in this Australian report. This report is not so sanguine as you about the future rain prospects for Australia. They suggest 20% less rain for southern Australia, (rain is predicted to increase in north Australia). Can you provide a reference for your claim that "the longer term trend for Australian rainfall [is] positive"? It seems to me that predictions of 20% decrease in rain is negative. To repeat: the point of this thread was to establish that AGW has caused spring to come earlier. Data has shown that spring has advanced worldwide. You have suggested that the advance of spring should be measured differently, and that it will not cause problems anyway. I think that the data is clear and convincing on the advance of spring. Data has not been presented in this thread on the problems that will cause. The debate over how much trouble AGW will cause is for another thread where data is presented about damages and cost. For here, I believe the data shows that the damage will be more costly than mitagation. You seem to feel that the damage will not be bad. We will have to see what data is produced when a thread discusses the damage that AGW will cause.
  20. The significance of past climate change
    thanks Philippe (#34). i enjoyed reading the comments on the skepticalscience thread from gallopingcamel and i did print out the paper you referenced and i'll take a look at that for a description as to why we aren't due for another glacial period now. #32 Riccardo, that figure on CO2 science appears to match the figure 2b in the paper. the graph in 2b does show temperatures during the MWP that are above modern temperatures. here is the graph from the Nature website. what rise are you talking about and why would you call the graph on the CO2 Science website a lie? i didn't read the article on the Nature website but instead just went to the graph that you referenced. thanks all (barry at #33 too) for the quick feedback - just another reason why this is the place to come when I have questions.
  21. The significance of past climate change
    Most engineers would understand the concept of 'signal conditioning'. If you put a signal of a certain amplitude into the box, what amplitude do you get out of the box? Likewise, if you put external forcings of certain amplitudes into the earth-box, what temperature amplitude do you get out of the box? If the amplitude out of the box is larger than you'd expect just on the basis of the input forcings, then the box is a amplifier: it contains internal reinforcings that are more positive than negative. What they are, exactly, is unimportant and maybe even confusing to discuss initially. After the point has been driven home, that earth is an amplifier, you can go into the details about what those mechanisms are that climatologists have discovered: albedo, methane, water vapor, etc, that make it so.
  22. Where is global warming going?
    @35 HR. Do you have a cite for lack of thermal expansion in the current period. My recollection without going back to check is that sea level rise is currently at least 50% thermal, with most of the rest from "reglar" glaciers and ice caps, and the small remaining bit from the two big ice sheets. However, very recent results show non-trivial acceleration from the two big ice sheets.
  23. Philippe Chantreau at 02:59 AM on 22 April 2010
    The significance of past climate change
    Gary Thompson, it has, by GallopingCamel. The next glacial would settle over the next 20000 years or so, which is way more than enough for humans to devise solutions or exterminate themselves. See this thread or this paper
  24. Trenberth can't account for the lack of warming
    'If an official inquiry demands the information stored on public computers then yes of course you would have to disclose the contents but only then.' But didn't that happen?
  25. The significance of past climate change
    i'm surprised i've never seen comments related to the fact that maybe we humans are counteracting that normal temperature decline wiht our GHG production I have, and not just from the skeptical optimists. ;-) The next ice age isn't due for tens of thousands of years. The earth has cooled by about half a degree C since the end of the climb out of the last glaciation 10k years ago. We've countered that and more within a century. Our immediate concern is the next hundred years or so. Here is the issue I suggested earlier regarding rate of change. We can adapt to long-term slow changes much more comfortably than relatively fast changes in the near-term (relatively speaking). Perhaps in 10 000 years, if we haven't warred ourselves to extinction or succumbed to a devastating plague, we may be knowledgeable enough to fashion some kind of thermostat for the planet that doesn't interfere adversely with long-term, possibly necessary climate changes. We're not yet wise enough to deploy any form of geo-engineering. i've heard the MWP debunked as a localized event The language is too strong. We think the Earth was generally warm, but datasets all over the world show 'medieval' warmth at different times, as much as 500 years apart. And most of the data we have is from the Northern Hemisphere. The MWP may or may not have been a global event, but it would seem there is some evidence for that. Whether or not the warmth for some sequent decades in the past was comparable to the last few decades is the qualified assessment most discussed (probably not). Here's a map of data sets often deployed by skeptics. Check the warm dates for each of the time series. Ironically, skeptics don't realize that they're buttressing the 'not global' argument when they reference this - they don't investigate much further than the message. http://pages.science-skeptical.de/MWP/MedievalWarmPeriod.html The map, by the way, documents a small number of paleo data sets (47). There are now hundreds. No doubt these have been selected to buttress the message. Ironic then...
  26. The significance of past climate change
    garythompson, you should always refer to the original scientific papers. The link you provide on the MWP has been "adapted" to hide the rise and erroneously draw to the conclusion that "Medieval Warm Period was about 0.4°C warmer than the Current Warm Period.". Nothing similar can be found in the original fig. 2b. On the contrary, it explicitly shows that the average 1997-2007 SST is higher than any other period in the last 2000+ years.
  27. The significance of past climate change
    Hi John, You may already be familiar with this presentation in June 2008 to the Tällberg Forum by David Wasdell: Planet Earth - We Have a Problem In case not, you might want to review it - he does an excellent job on feedbacks, and you may find some ideas therein. I find this an excellent presentation, not only for it's content, but also for the passion with which it is delivered. Thanks for all your excellent work!
  28. The significance of past climate change
    I think one important aspect missed in your discussion is the distinction between internal and forced variability. I think engineers, in particular do get that. You make it sound like all climate change is "forced" by some external mechanism. But it is not. There is internal natural variability that causes ups and downs and those are much more difficult to understand. The challenge in climate science is to separate those two and examine whether the "forced" variability is much greater the expected internal variability over the time or spatial scales one is interested in. Daansgard-Oeschger might stand as an example for internal variability that is indeed larger than than recent variability, but the mechanisms involved are tied to glaciated periods and the spatial scale is not global. Another aspect, I have found difficult for engineers and many other scientists to grasp is: How a system where all feedbacks sum up to a net "positive" does not constitute a run-away system. This is not and easy thing to explain and typically requires too much time in a short talk. But may constitute a stumbling block for engineers in particular.
  29. Flowers blooming earlier now than any time in last 250 years
    michael sweet at 09:39 AM, you appear to be missing the point that soil moisture levels, which might surprise you, are tracked and well documented, are more dependant on total rainfall and it's distribution throughout the year than any slight changes in temperature. Whilst maximum and minimum temperatures may in some locations show slight changes, the other contributing factor, hours of daylight, and hours of darkness, also do not change from year to year despite the idea of many that daylight saving does give more daylight hours. As for long term trends in rainfall, for Australia generally, the last half of the 1900's were wetter than the first half, with the wettest period on record being during the mid 1970's, that possibly being the wettest period since first settlement. Despite the absence of weather data from the official BOM records, what records do exist indicate the 1800's being drier and more drought prone than the 1900's. So despite the most recent drought, and in spite of it, the indications are that the longer term trend for Australian rainfall are positive, and this will be the determining factor as to whether seasons advance or extend more so than any very minor changes in temperature. Global warming does not stop the natural cycles driven by other yet to be fully understood forces, and the next few decades of predicted and expected generally wetter conditions for much of Australia should provide much greater insight as scientists are now better prepared to poke, prod and measure than any time previous such a cycle occurred.
  30. The significance of past climate change
    john, as usual, a great post that is thought provoking and a joy to read. what was the reason for the MWP? there seems to be a new paper on this topic that points to this happening in the Indo-Pacific so it appears this event wasn't localized to Greenland. were we in a solar optimum at that point? i've heard the MWP debunked as a localized event but there are other papers such as this that show it happened other places on the Earth at the same time. I've also seen graphs of vostok ice cores showing we are due for another glacial period and i'm surprised i've never seen comments related to the fact that maybe we humans are counteracting that normal temperature decline wiht our GHG production. the up shot being, even if you subsribe to the AGW theory, it might not be a bad thing for the next 1000 years or so since plus 1 to 2 degrees C is easier to adapt to than negative 8 to 10 degrees C. forgive me if this has been already discussed ad nauseaum.
  31. The significance of past climate change
    If you don't mind my asking, do you know what kind of engineers you were presenting to? In general, different engineering disciplines have different levels of understanding of advanced math, statistics, physics, chemistry, and so on. So what works for a room full of electrical engineers won't necessarily work for a room full of software engineers, mechanical engineers, nuclear engineers, or chemical engineers. Unfortunately, that means you'll need a few different presentations instead of just one, and you should ask the group that's sponsoring your presentation what the audience is likely to be before (and maybe ask the audience too and tailor your presentation accordingly).
    Response: They were mechanical engineers but let me be clear that I'm not commenting on their ability to understand past climate change but on my ability to explain it. The blank stares I receive are fairly universal. A university group once borrowed my info to write a short debunking flyer and I noticed they went with a completely different answer to the 'climate's changed before' argument - presumably they either didn't like or didn't understand my explanation (or thought they could do a better job). Hence I'm going back to the drawing board.
  32. The significance of past climate change
    "See, this is the thing. In my presentation to the engineers, I did up this gorgeous little schematic of positive feedbacks, showing increased evaporation, more water vapor causing an increased greenhouse effect, more clouds, etc. Very colourful, I was very proud of it :-)" Do you have a link to this schematic? I am an engineer and would be pleased review it as well. I find your answer lacking since it has been dumbed down. It is, with all due respect, meaningless in 'simplified' form. What I am especially interested in is the detail of the positive feedbacks and whether you have satisfied the negative feedbacks sufficiently. Regards
    Response: Here's the slide I showed at the talk. Note - its purpose was just to introduce the concept of positive and negative feedbacks - that warming initiates a series of climate responses. It was not about accounting for every individual feedback (sea ice feedback is noticeably absent) - the general gist was to communicate that there are a myriad of different feedbacks which makes it difficult to work out the net feedback. But the way to cut through all that and calculate the net feedback without having to worry about the individual components was to look at past climate change.


  33. The significance of past climate change
    Seems like the question "why hasn't the climate changed over the millennia ought to garner some interest as well. It's been stable enough to grow stuff for a long time. Don't need esoteric statistics to see that.
  34. The significance of past climate change
    My first thought was - do positive feedbacks kick in as strongly when the energy balance shifts towards cooling? My initial guess is "not so strongly", or, "negative feedbacks come into play more", judging by the slow cooling period compared to warming in the late quaternary ice ages. I don't know if covering this would dilute the message, but I think it would help give a more balanced assessment - skeptics scorn commentary that only talks about warming, for example. And I don't know if this goes beyond your intent, but it might be worth mentioning the rate of change now compared to past warming events. What you already have, though, is pretty clear I think. I'm not a scientist or an engineer, but it makes sense to me. (I am a fairly well-read layman, though)
  35. The significance of past climate change
    nautilus_mr #10 I agree with you. Paleoclimatology is just one of the many lines of evidence to climate sensitivity. And if you pick one specific period -like the Medieval Warm Period- it's just one tiny fraction of this. So even if there had been a strong MWM... not much would change in the science.
  36. The significance of past climate change
    chris #21 I would add in your response to Péter that this interglacial is remarkably stable when compared to the previous ones. So his assertion "temperature diminishes with temperature" has little supporting evidence. Besides, some events like PETM support a self-reinforced warming hypothesis.
  37. Where is global warming going?
    re: Berényi Péter at 01:38 AM on 21 April, 2010 mspelto at 00:46 AM on 21 April, 2010 says: The arctic in particular has had high air temperatures Berenyi Peter replies: "Come on. The "Arctic" has only one active GHCN station in Canada" so what Peter? There are lots of active Arctic temperature stations
  38. The significance of past climate change
    I assume this is intended to replace the text on the “Climate’s changed before” page. It seems like a good explanation to me – but then I understood the explanation on the original page (at least I think I did). I also think it’s worth including all the climate sensitivity info that was in the old version. I recommend that you keep your more detailed explanation and link to it from the new version. Also, is it really possible to derive solar activity from ice cores? I’m sure there are other proxies (carbon-14 comes to mind), but ice cores?
    Response: The more common method of working out past solar activity is using radiocarbon data from tree-rings. But Beryllium isotopes from ice cores are also a proxy for solar activity, going further back than tree-rings.
  39. The significance of past climate change
    Berenyi Peter, I suspect you say stuff that you know is wrong or illogic (but you say it anyway). (1) The Dansgaard-Oeschger events in your graphics are measurements of rapid temperature changes in Greenland cores. They are barely recognizable (and asynchronous) in Antarctic cores. Thus they are not representative of global warming/cooling events. (2) In fact these events are recognised likely to arise from major rapid shut down and restarting of the major ocean circulations (thermohaline circulation) that strongly participiates in bringing heat (or "thermal energy" if we're stil being pedantic about that!) from the equator to the high Northern latitudes. In other words they are indicative of major redistribution of Earth heat as opposed to global scale warming or cooling events. (3) Thus they have nothing to do with "climate sensitivity" which is the equilibrium response of the Earth's global temperature to changes in radative forcing. (4) The fact that D/O events (and similar large scale jumps/drops in high Northern latitude temperatures) aren't apparent in the Holocene part of the record you posted, is that these events only occur under conditions that major ice sheets occupy the high N. latitudes (that's part of the likely mechanism of the D/O events). Since we're in an interglacial period when these major ice sheets have melted away, we can't have D/O events. It's got nothing to do with temperature "being much more variable when it's cold" or "climate sensitivity diminishing with increasing temperature". One should really address these issue in terms of what we know!
  40. Berényi Péter at 23:38 PM on 21 April 2010
    The significance of past climate change
    It is a temperature reconstruction from a Greenland ice core (close to summit, at 72.6 N, 38.5 W, altitude 3200 m) for the last fifty thousand years. As you can clearly see, temperature is much more variable when it is cold. In other words: climate sensitivity diminishes with increasing temperatures.
  41. Tracking the energy from global warming
    BP, HR and John Cook - great discussion, and lots of effort in posting the graphs - congrats on facilitating it John. A few points which my reading over the past year has produced: 1) Incoming radiation at TOA is generally quoted as TSI of 1366 W/sq.m divided by 4 = 341.5 /sq.m. The latest SORCE TIMS satellites give a figure for TSI of 1361.5W/sq.m - 4.5W/sq.m less. Divided by 4 this is 1.1W/sq.m less incoming at TOA than the accepted figure from previous satellites. This has been unexplained by the TIMS people since 2005. Check out their website: http://lasp.colorado.edu/sorce/data/tsi_data.htm To justify their -4.5W/sq.m lower figure, the TIMS people then produced an adapted Trenberth diagram of the total energy flux of the earth system using their reduced TSI/4 as the incoming radiation. I ran their graph past Dr Trenberth and he responded (he is a class act) that the TIMS graph did not make sense. Point: We don't have an accurate figure for TSI - only relative satellite figures for 30 years. The latest TIMS (4 satellites) read 4.5 W/sq.m low on previous numbers - so how do we know what incoming solar radiation figure 'balanced' the earth's outgoing longwave radiation in pre-industrial times and therefore what is the true 'equilibrium' temperature of the planet? 2)OHC - the von Schukmann paper has been introduced to the layman on this website. It is the only one which finds most of Dr Trenberth's missing heat down to 2000m. The sharp slopes of the bumps in von Schukmann's global OHC graph has been pointed out by BP and indicated huge rates of heat transfer down to 2000m in a matter of weeks to months. This hardly seems credible by air-water radiative or convective transfer nor even conduction of the warmed water to cooler water. The 'tiling' of the oceans and permanent tethered buoys reporting from the same tile at the same time would seem the only way to get an accurate snapshot of the whole ocean at Times 1 and 2 in order to calculate the change in OHC. The Argo buoys number 3255 for ocean area of 3.62E8 sq.km averages one buoy for every 111000 sq.km or a square of ocean 330km x 330km. There are practicaly no buoys above 60 degrees N or S latitude. I invite comment on the errors involved in one Argo buoy temperature column reading (not all reading down to 2000m) for on average every 111000 sq.km of ocean.
  42. The significance of past climate change
    I tend to find the non-scientific mind has a poor conception of order of magnitude and probability. For example they are quite happy to imply that climate change happening now is natural by referring to climate change during an epoch perhaps hundreds of thousands or millions of years ago. All indications are that climate hasn't changed significantly for the best part of 10,000 years, so for it to suddenly change in the last 150 years just at the same time as mans influence on the biosphere has become significant, strongly implies this is the most likely cause. This is without any knowledge of greenhouse gases or other causes, it is a pure statistical explanation. The other more direct experimental evidence such as radiation exchange simply increases this probability further.
  43. The significance of past climate change
    I think you have the facts well explained, but there are a lot of them. Is an analogy helpful? Eg: Climate change history is like precedent in law - you have a good chance that a previous finding or two might establish where things stand 'when deciding subsequent cases with similar issues or facts'. Yes; the climate has always changed, man-made climate change is just a new precedent. Looking at 'precedents' or past forcings helps us with what might come next.
  44. Climate's changed before
    He probably just wants to "enlighten" us with a link to his own blog. Anyway, a large part of the discussion is about PETM and AGW (with the link to resilient earth). A lot of it sounds like, if we extrapolate our CO2 emissions it would take forever to reach PETM concentrations, and PETM wasn't even caused by CO2 alone, so PETM cannot be used as an indication for the effect of CO2, so AGW does not exist. All the individual statements above are probably correct, except the conclusion. Think about it, have we seen any projections from IPCC showing a 6 -9 C global temperature rise? No. Oh, BTW it can also be found on that website that models can not fully reproduce PETM even if we use the CO2 concentrations at PETM, so models are WRONG! (It is understood why, because GCMs currently use bandwidth parametrisation instead of line-by-line CO2 absorption schemes (because of limited computer power) and will thus deviate if brought very far from their original (~300 ppm) state. This probably introduces a large error when going to extremely large (2000 ppm) CO2 concentrations. This PETM event can (in "skeptical" reasoning) even be used to say "look, even if we get a 3 C global temperature, it is all natural! Because in the near past of the Earth's history it has been 9 C warmer, and humans were not yet around!" And, using this reasoning and the paleo record, all climate variation will always be natural...
  45. Bart Verheggen at 22:29 PM on 21 April 2010
    The significance of past climate change
    The thing with this line of argument that your tackling is that it fails basic logic: Human activity of course didn't cause past climate changes, but that’s no evidence that it doesn’t now. Try that line of argument in a court of law against a arsonist, by saying that forest fires have always happened naturally; it won’t fly. Indeed, GHG had an important role to play in many past climate changes (even though their concentration changed without human involvement). Looking at the past actually strenghtens the evidence for a climatic effect of GHG.
  46. Spencer Weart at 22:28 PM on 21 April 2010
    The significance of past climate change
    An excellent presentation of past climate change is available online: Richard Alley, "The Biggest Control Knob: Carbon Dioxide in Earth's Climate History" at the Fall AGU meeting, see http://www.agu.org/meetings/fm09/lectures/videos.php To be sure this is for a scientist audience but the main points can be adapted for others... admittedly not easy. And of course, bear in mind that people have a hard time grasping knowledge that conflicts with what they want to believe!
  47. The significance of past climate change
    I concur with #13. I think the first principle is explain what is causing warming now, then climate history comes in to a supporting role.
  48. Miriam O'Brien (Sou) at 22:21 PM on 21 April 2010
    The significance of past climate change
    How about this: Rather than list all the possible primary drivers (forcings), start by describing a couple of periods when the climate changed in the past from different forcings. For example, Milankovitch and volcanoes as the initial forcing. For each of the two periods in turn, describe in simple terms what the earth was like before the change (eg ice free Antarctica) and what it was like afterwards (eg lots of ice everywhere). Describe the forcing that led to the change (and define the terms - engineers most probably use slightly different jargon from climate scientists). Then move to today and show the evidence that the climate is changing (temperature, ice, oceans, sea levels etc). And explain that the forcings that caused the prior changes you discussed are absent, and the only primary driver or initial forcing operating today is CO2 / greenhouse gases. Then show how greenhouse gases also acted as a positive feedback, amplifying the changes you discussed in the two first examples (warming or cooling). You can deal with the 'but couldn't it be due to ...' in the question time / discussion - keep your detailed slides on hand for when specific questions are asked. If there are particular points you want to elaborate on (eg role of water vapour/clouds which some often ask about), you can probably do this during the discussion by saying, 'someone often asks me xyz' and then whip out your extra slides :). (As a broad (over?) generalisation, engineers are often clever, but their thought processes tend to be linear rather than lateral. Simple works best. One step after another, with a bit of repetition and reiteration of key points along the way. No offense meant to engineers, it's just an observation from working with groups of engineers in a variety of contexts.) The following publication is rather good, and will no doubt be more useful than my off the top of the head idea: CRED guide
  49. The significance of past climate change
    I think part of the problem is that you are really conflating two different issues... which if separated might be phrased as; 1: 'Climate has changed in the past so how do we know humans are causing it now?' 2: 'How do we know that the climate change we are causing is going to be significant?' I think you can really handle the human causation question using CO2 alone (past correlations of CO2 and temperature, satellite and ground measurements confirming energy imbalance in CO2 absorption spectra, various proofs of increased CO2 levels being human caused, et cetera)... possibly following that up with explanation of why it ISN'T the Sun, cosmic rays, volcanoes, martian death rays, or whatever. All of which can be handled by showing lack of correlation - some match past changes, but none match the current. Once you have established CO2 as a major 'control knob' in determining temperatures then you can get into feedbacks amplifying that effect and what the historical record tells us about those. Basically, handle one issue at a time. Don't start talking about positive feedbacks before they've bought into CO2 increasing temperatures at all.
  50. The significance of past climate change
    re #6 and #9: I get that argument sometimes and my response is that it wouldn't matter if there was either a more rapid or larger warming at some point in the distant past - there weren't billions of people living near the sea then. "The Planet" is not endangered - it is a small percentage of the planet's flora and fauna, plus a big percentage of its human beings. Of course, it's like asking for anesthetic at the dentist and being told you shouldn't have it because the dentist's grandfather had to suffer more than you!

Prev  2403  2404  2405  2406  2407  2408  2409  2410  2411  2412  2413  2414  2415  2416  2417  2418  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us