Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Can we air condition our way out of extreme heat?

Posted on 15 July 2024 by Guest Author

This is a re-post from The Climate Brink by Andrew Dessler

Air conditioning was initially a symbol of comfort and wealth, enjoyed by the wealthy in theaters and upscale homes. Over time, as technology advanced and costs decreased, air conditioning became more accessible to the general public.

With global warming, though, air conditioning has moved from being a luxury to being necessary for survival in many places. If you live in Phoenix or Houston and your air conditioner fails, staying in your house may be impossible and you may need to evacuate.

Air-conditioning now plays a central role in protecting public health in homes, workplaces, and public spaces. But, of course, not everyone can afford it. This is one of the biggest equity issues in the climate debate, with some saying, “we’ll rely on air conditioning” to address climate change. This essentially abandons the poorest in our society, as well as the animal world, to a hellishly hot world they did not create.

Given the enormous importance of air conditioning, I thought it would be useful to put together a few posts about it. This is part one: some background on the physics of air conditioning.

Heat engines

In thermodynamics, a heat engine is a device that converts thermal energy into mechanical work by exploiting the temperature difference between a hot and a cold reservoir.

A coal-fired power plant is an example of a heat engine: It takes heat from a coal-burning furnace, the hot reservoir, converts some of it to work, e.g., driving a generator to produce electricity, and rejects the remainder of the heat into the cold reservoir, which is the environment.

Note that you cannot convert heat to work with 100% efficiency. This is a consequence of the second law of thermodynamics (see appendix). The second law in fact allows us to derive exactly how much of the energy extracted from the hot reservoir can be converted into work:

efficiency=1−Tc/Th

where Th is the temperature of the hot reservoir, e.g., the furnace, and Tc is the temperature of the cold reservoir, usually the environment. Plugging in typical values of 80F and 600F for a coal-fired power plant1, you get an efficiency of around 50%.

This is the best you can do and, in the real world, you can’t achieve this: Very efficient coal-fired power plants tend to be around 40% efficient. This means that, for every 100 Joules of energy from burning coal, you get 40 Joules of electricity. The other 60 Joules are waste heat ejected into the environment. This necessary production of waste heat is a main reason that thermal power plants are usually sited next to rivers or lakes, which are used as heat sinks.

Air conditioners

What does this have to do with air conditioning? Well, an air conditioner is just a heat engine run backwards: you put work into it and it takes energy from the cold reservoir, the inside of your house, and ejects the energy into the hot reservoir, the outside of your house.

The efficiency of an air conditioner is usually expressed in terms of its Coefficient of Performance (COP): the ratio of the heat removed from the inside of your house (Qc) to the energy input required to remove that heat (W):

COP=Qc/W -> Tc(Th-Tc) = Tc/dT

where Tc and Th are the temperatures inside and outside of the home and ?T = Th minus Tc, the difference between the inside and outside temperature. You can think of the COP as the efficiency of your air conditioner

The important result here is that the efficiency of your air conditioner decreases as ?T increases — e.g., as the outside temperature goes up.

Image by Freepik

Rearranging the equation above, the energy W required to remove heat Qc from your house is proportional to:

W -> Qc(dT/Tc)

Some numbers will illustrate the importance of this. If your house is at 75F and the outside temperature increases from 96F to 100F, then your air conditioner needs to consume 20% more energy to remove 1 Joule of energy from the inside of your house.

To maintain a constant temperature in your house, your air conditioner must continuously remove the same amount of energy that is entering your house. In other words, the cooling (Qc) of your air conditioner needs to match the energy flowing into your house.

If we assume that energy flowing into the house from the hot outdoors is set by Newtonian cooling, then Qc is also proportional to ?T, so our expression reduces to:

W -> dT^2/Tc
Thus, the work required to keep your house at a fixed temperature Tc increases with the square of the temperature difference between inside and outside temperature, ΔT².

The impact on required energy

In this context, W is a measure of the amount of electricity you need to buy in order to air condition your house. As the temperature outside goes up, the energy required (and the amount of money you have to spend on it) increases as ?T2.

Let’s use the same numbers from the previous example: you want to keep your house at 75F. If climate change has increased the outside temperature from 96F to 100F, the energy your air conditioner consumes increases by (100-75)2/(96-75)2 = 252/212 — this is an increase in energy consumption of 42%!

Averaged over an entire day, the increase will be less than this because ?T is smaller for much of the day (e.g., at night) But the result is robust: climate change is driving exponentially increasing energy demand for cooling.

Can we air condition our way out of climate change?

Air conditioning is expensive and, because of climate change, it’s getting a lot more expensive. People with financial means, who work in air-conditioned offices and live in climate-controlled homes, can handle rising temperatures by simply paying for more electricity.

However, a significant portion of the global population lives the hot life. These people live in homes without air conditioning, work outdoors or in warehouses or kitchens with no climate control.

And even when people have access to air conditioning, they can struggle to afford it. This is well described by Jeff Goodell in his great Rolling Stone article about extreme heat in Phoenix:

“I am in trouble”: poor people today, everyone tomorrow

This is the reality of air conditioning: great if you can afford it, terrible if you can’t. Any actual adaptation plan that relies on air conditioning will require massive government expenditures to air condition places that have historically not been air conditioned, like Chicago or Seattle. And there’s nothing the “we’ll adapt” crowd is less interested in than paying to help people adapt.

0 0

Printable Version  |  Link to this page

Comments

There have been no comments posted yet.

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us