Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  2579  2580  2581  2582  2583  2584  2585  2586  2587  2588  2589  2590  2591  2592  2593  2594  Next

Comments 129501 to 129550:

  1. David Horton at 18:52 PM on 18 May 2009
    Does ocean cooling disprove global warming?
    #1 Philippe - I guess the logic would be that the ocean mass is so great that changes in temperature will be very slow, damping out the kind of fluctuations you can get in air. But as Ian points out, this ignores salinity change and mixing of levels. It also ignores changes in the movement of water masses. I may well be misunderstanding something about the logic, but don't such phenomena as La Nina/El Nino argue for at times quite rapid changes in ocean temperature regionally? And wouldn't this be potentially reflected in the movement of other streams in the ocean? But above all, the 5 year sequence shows the same cherry picking that has become so familiar over the last couple of years. I guess the only difference here is that they are arguing that this is a general reflection of global changes because of the energy inertia of the ocean system.
  2. Does ocean cooling disprove global warming?
    Does argo probe deeper as well??
  3. It's not bad
    Some of your pros and cons listed above and not correct. The longer geological record contradicts statements made by the IPCC and other climatologists, because the IPCC and other climatologists don't usually bother to consult the longer geological record, and the usual argument from climatologists is that 'geologists are not climate scientists', which is false; climate is a subset of geology (earth science), not the other way around, (with both ultimately a subset of astronomy). The longer geological record has much to say about the lists you have given above, for eg: -Increased desertification corresponds to globally cool periods, NOT warm periods, in the geological past, (which is the opposite of what the IPPC projects). This genrally means that African and the US, and some Asian crop yields will increase with warming, not decrease. Globally, there is more rainfall. Africa, for example, began to become drier with the onset of glacial periods several million years ago, with larger areas of savannah and reduced rainforest cover, (which may well have led to the evolution of the savannah-ape line-that's us). -Warm periods do not correspond with increased extinction in the geological record, rather, biodiversity increases (which is the opposite of what the IPCC projects) -Coral reefs thrive during sea level rise, whilst sea level falls produce extinction. -Coral reefs thrive during warmer periods, and oceans do not become acidic from greatly increased C02; there were many periods of thriving corals and other marine life in the geological record when C02 was much higher than today. -Polar bear populations have survived the many warm interglacials in the last several hundred thousand years, warmer periods do NOT promote their extinction. The bigger threats to polar bears are ecotourists, bureaucrats, and hunters. -The Tibetan plateau began to rise around 30-40 million years ago; changes in short -term climate are paradoxical and not thought to greatly affect water supply/runoff in this region as much as longer period changes in elevation; as during globally warmer periods snow (and rain) precipitation increases along with seasonal meltwaters-particularly on the Chinese (cooler) side, whilst in cooler periods ice and snow cover increases but overall precipitation and seasonal meltwater generally decreases. Other points: -Crop yields at all latitudes increase with increased C02, (already an estimated 15% since about 1850), the same goes for tropical rainforests,(the Carboniferous period had high vegetation levels and high C02-much higher than at present) -Both Europe and USA have thrived in warmer periods, both ecologically (in the past) and economically during human occupation eg reduced energy consumption for heating, increased rainfall, less droughts, less deserts (USA). -Lakes do no "vanish" on a global scale during globally warmer periods; if anything it is generally the opposite (point 1 above-lower desertification occurs during warmer periods). I could dig up alot of other longer geological record indices, but again, what surprises me is the complete ignorance amongst many who promote various global warming scenarios/projections on what the actual record of the earth itself has to say on these matters. A similar thing occurs with creation scientists, and in various discussions and debates within biology about evolution; the longer geological record is usually ignored (other than the usual-'the fossil record is incomplete'), when it was the geological record that formed the general foundation about thinking about evolution in the first place, and has alot to say about it. Another related topic is the long history of debates around catastrophism and uniformitariaism-which also have much to say about current issues/debate concerning global warming-but that is for another day and another thread. In general, there needs to be more input/integration from the actual geological record on various climate change scenarios/issues, which directly contradict some of the (surmised/projected) points in your list above.
  4. Dan Pangburn at 15:47 PM on 18 May 2009
    It's the sun
    Patrick 027: Wow! You have been busy . . . This responds to 383. I will read your latest tomorrow. The egregious mistake that the Climate Science Community is making is obvious to those who understand Control Theory that have looked at the paleo temperature data. From your comments it is also obvious that you are unfamiliar with Control Theory. With knowledge of Control Theory you would recognize that your statements in 383 are mostly nonsense. With Control Theory it is trivial to determine that there is no net positive feedback from average global temperature. With no net positive feedback added atmospheric carbon dioxide has no significant effect on average global temperature. “This ignores the possibility that the temperature variations were externally forced. Positive feedback causes a cyclic variation in response to a cyclic forcing to be larger in amplitude than otherwise.” Quite the contrary, it proves that temperature changes from up-trend to down-trend (or vice versa), were externally forced. Selection of a suitably long trend avoids cyclic issues. “It also ignores that feedback mechanisms work differently on different time scales” This and later comments demonstrate a lack of understanding of what feedback means in a dynamic system like earth’s climate. “The logarithmic proportionality of radiative forcing to CO2 level has no direct bearing on the climate sensitivity to radiative forcing.” This is kind of vague but appears to expose a fundamental lack of understanding of how gases absorb photons. Perhaps it would help to study work by Dr. Jack Barrett at http://www.warwickhughes.com/papers/barrett_ee05.pdf “Actually, cloud feedback in climate models is small and ranges from negative to positive; the dominant positive feedbacks are water vapor and albedo.” A recent paper by Dr. Spencer addresses cloud feedback and points out the previous over-estimation of climate sensitivity by the IPCC. It can be seen at http://www.drroyspencer.com/research-articles/satellite-and-climate-model-evidence/
  5. It's the sun
    Dan Pangburn (cont.) - "Without significant net positive feedback AOGCMs do not predict significant global warming." Approx. 1 deg C for doubling CO2 may or may not be considered significant; it is certainly a significant relationship of CO2 varies by a large enough amount. "Zero feedback results in 1.2°C from doubling of atmospheric carbon dioxide per p631 of ch8 of UN IPCC AR4 " That sounds about right. What I want to emphasize here is that the logarithmic proportionality of radiative forcing to atmospheric CO2 level has nothing directly to do with whether or not there are positive or negative feedbacks to radiative forcing or whether tipping points might be crossed as radiative forcing is changed. ----------- From the time scale dependence of feedbacks: There could be some exceptions, but the general tendency is for Earth's climate to vary the most in response to externally-imposed forcings with time scales ranging from perhaps many decades to perhaps hundreds of thousands of years, or something similar to that. Simplified hypothetical examples (with a qualititative resemblence to reality, but I don't actually know some of the real numerical values) to illustrate the point: Suppose at time 0, there is a sharp change in radiative forcing of + 4 W/m2 - perhaps from an increase in solar radiation absorbed over the Earth's surface (for an albedo of 0.3 and taking into account that the surface area of a sphere is 4 times its cross sectional area, a 4 W/m2 solar forcing actually requires about a 23 W/m2 increase in solar TSI, quite a bit larger than any variation known to occur outside the long-term solar brightenning over 100s of millions of years that is a characteristic of stellar evolution; recent solar TSI variations (over the period of time relevant to AGW) may be a tenth of that or perhaps less). BEFORE CONTINUING THAT, BACKGROUND INFO: ------------ (PS actually, often what is used for 'radiative forcing' is the tropopause level radiative forcing with an equilibrated stratosphere. I think this is the value that is close to 4 W/m2 (Actually maybe 3.7 W/m2, give or take a little) for a doubling of CO2 (and I think that includes the SW effects of CO2, which are much smaller than the LW effects but are present (CO2 can absorb some SW radiation). Radiative forcing at any level is the sum of a decrease in net outward (upward minus downward) LW (mainly emitted by Earth's surface and atmosphere) radiation at that level and an increase in absorbed SW (essentially all solar) radiation below that level; the climatic response involves changes in temperature that change the LW radiant fluxes to balance the forcing plus any radiative feedbacks that occur (which can be LW and/or SW). Variation in radiative forcing over vertical distance is equal to a radiatively forced heating or cooling. Top-of-atmosphere (TOA) radiative forcing is the sum of a decrease in LW emission to space and an increase in all absorption of SW radiation. An increase in solar TSI of 2 W/m2 results in a (globally averaged) TOA SW forcing of 0.35 W/m2 if the TOA albedo (the fraction of all SW radiation incident at TOA that is reflected to space) is 0.3. But the tropopause level forcing will be less than the TOA forcing because some of that 0.35 W/m2 is absorbed in the stratosphere - and it generally will be a larger fraction than the fraction of all SW radiation absorbed in the stratosphere, because solar UV fluxes are proportionately more variable than total TSI. An increase in the greenhouse effect involves increasing the opacity of the atmosphere over portions of the LW spectrum. Aside from LW scattering ... (which is minor for Earthly conditions, but can also contribute to a greenhouse effect in theory under some conditions (such as with dry ice clouds), but in a different way than atmospheric absorptivity and emissivity (by reflecting LW radiation from the surface or lower layers of air back downward); for Earthly conditions, scattering is much more important at shorter wavelengths) ..., each layer of atmosphere emits and absorbs LW radiation to the extent that it lacks transparency to radiation from behind it (in either direction). The surface also emits and absorbs LW radiation, almost as a perfect blackbody (but not pefectly; it does reflect a little LW radiation from the atmosphere back to the atmosphere). Along a given path at a given wavelength, Absorptivity = emissivity when in local thermodynamic equilibrium (a good approximation for the vast majority of the mass of the atmosphere and surface), where emissivity is the intensity of emitted radiation divided by blackbody radiation intensity (function of wavelength and temperature, and index of refraction, but that last point can be set aside for radiation in the atmosphere) for the temperature of the layer or surface, and the absorptivity is the fraction of radiant intensity absorbed along a path. As a path's optical thinckness increases either by geometric lengthening or by increasing density of absorbant gases or cloud matter, absorptivity and emissitivity both exponentially 'decay' from zero toward 1, or toward a lower number if there is reflection or scattering involved. Positive TOA LW forcing is caused a decrease in LW emission to space from increased opacity, which hides a greater portion of the (globally and time-averaged) larger LW fluxes from the (globally and time-averaged) warmer surface and lower atmosphere from space, replacing it with reduced LW fluxes from generally cooler upper levels of the atmosphere (the warmth of the upper stratosphere is in a very optically thin layer at most LW wavelengths and the thermosphere is too optically thin to have much effect). For relatively well-mixed gases (such as CO2), increasing concentration also cools the stratosphere by increasing the stratosphere's emmission to space and decreasing the upward LW flux that reaches the stratosphere. Thus, the tropopause level radiative forcing from an increase in CO2 is actually greater than the TOA level radiative forcing. (The SW forcing from CO2 absorption of SW radiation tends to heat the stratosphere, but the LW effect dominates. If there were an increase in SW absorption in the troposphere, this would add to tropopause level forcing, but it would (along with stratospheric SW absorption) reduce forcing at the surface.) Increasing LW opacity also tends to increase radiative forcing at the surface by increasing downward emission from the lowest (and generally, on average, warmest) layers of the atmosphere, by making them more opaque (they replace a fracton of the smaller LW fluxes from the upper layers and lack of LW flux from space with a larger increase in their emitted LW flux). Increasing solar TSI has a positive radiative forcing at the surface, which is smaller than that at the tropopause level because some SW radiation is absorbed in the troposphere. Other points: Volcanic stratospheric aerosols have a larger negative SW forcing at the surface and tropopause than at TOA because they absorb some solar radiation as well as scatter it. An increase in albedo at one level (at the surface or within the atmosphere) tends to produce a negative SW forcing, but it will be larger below that level than above to the extent that the increase in upward SW radiation above increases SW absorption (heating) above that level. An increase in absorption of SW radiation (such as by water vapor) only results in a positive TOA forcing in so far as it reduces the amount of SW radiation reflected to space (by intercepting SW radiation both before and after scattering), and will result in a negative forcing at lower levels. ---- The stratosphere has a low heat capacity and tends to reach equilibrium with radiative forcing on short timescales (sub-seasonal, as I recall). Radiative forcing with stratospheric adjustment includes changes in LW radiation within and from the stratosphere resulting from stratospheric temperature changes. This tends to reduce the difference between TOA and troposphere-level forcing from before stratospheric adjustment. It is useful to use tropopause-level forcing with stratospheric adjustment because the remaining climatic response will tend to be more similar among different forcing mechanisms (solar forcing warms the stratosphere and thus stratospheric adjustment increases forcing at the tropopause; the opposite is the case with CO2), although there can still be differences in efficacy (the climate sensitivity to global and annual average forcing, to one forcing agent relative to a reference forcing agent - for example, black aerosols on snow and ice (I am not 100% sure but I think the effect may be amplified because the warming is concentrated in regions where there is a strong positive feedback, resulting in greater global-average warming per unit global average radiative forcing), and also, perhaps how the effects of solar, volcanic, well-mixed greenhouse gas, and stratospheric ozone depletion forcings affect the circulation patterns of the stratosphere and troposphere and interactions between them...(NAM, SAM, circumpolar vortex); also, solar forcing can change the ozone level in the stratosphere - but so can climate change in general (temperature dependant chemical reactions, polar stratospheric clouds, circulation patterns that bring ozone from the tropics to the high latitudes and then downward). Why is tropopause level radiative forcing so important? In the global average, solar heating, although somewhat distributed among the surface and atmosphere, is displaced downward relative to the distribution of radiative cooling to space. In pure radiative equilibrium, this would be balanced by radiative fluxes among the surface and different levels of the atmosphere. However, the temperature gradient required for such radiative equilibrium is unstable to convection in the lower atmosphere. Thus, the climate tends to approach a radiative-convective equilibrium, in which, to a first approximation, a net convective flux (including surface evaporative cooling and latent heating upon condensation/freezing of water) cools the surface and heats the troposphere, balancing a net radiative heating of the surface and net radiative cooling distributed within the troposphere. Localized vertical convection, where it occurs, causes the troposphere's vertical temperature distribution to approach neutral stability - a temperature decline with height near the adiabatic lapse rate (the rate at which temperature decreases due to expansion of some mass of gas with decreasing pressure, in the absense of a heat flux into or out of that mass). Because of condensation, the lapse rate that applies (except near the surface, below cloud level) is the moist adiabatic lapse rate - it is less than the dry adiabatic lapse rate because of latent heating upon ascent. It diverges most when latent heating per unit vertical lifting is greatest - which is at higher temperatures (found lower in the atmosphere). Thus the moist adabiatic lapse rate varies over the globe and with weather conditions and seasons, though a good representative value is 6 or 6.5 K per km. Because radiative fluxes by themselves would drive the lower atmosphere toward being convectively unstable, the surface and various levels within the troposphere tend to warm up or cool off together in response to forcings - they are convectively coupled. Any increase in radiative forcing at the tropopause level corresponds to some change in radiative heating below the tropopause level. If this radiative heating is concentrated at some level, it will, without changes in convective heat fluxes, warm up that level, decreasing vertical stability above and increasing it below, thus slowing convective heat transport up to that level from below and increasing it from that level to above. Convection thus spreads the heating effect vertically throughout the depth that convection can occur. So the surface and all levels within the troposphere warm up by similar amounts. The warming may be a bit less at the surface because the moist adiabatic lapse rate decreases with increasing temperature (assuming the cloud base level (lifting condensation level) does not rise on average, etc., because the dry adiabatic lapse rate applies to convection below that level and it is larger and is less sensitive to temperature). Complexities of response: 1. This is complicated by spatial and temporal variations. 1a. The radiative forcing (and it's vertical variations) for any given change is not generally evenly distributed over space and time; just as each additional unit of any one substance (Gas or otherwise) will, beyond some point, have decreasing marginal effect, different agents can overlap with each other; additional CO2 will have less effect in cloudy and humid air masses (although the tropopause level forcing will depend much more on high level clouds and upper tropospheric humidity than low level clouds and humidity, since the CO2 in the cold air above a warm cloud or warm humid air mass will still block some LW radiation emitted from those warming layers; ... it is also worth pointing out for other reasons that reduction in CO2 radiative forcing by H2O vapor will be greater for surface forcing than for tropopause level forcing at least in part because H2O vapor relative concentration decreases generally exponentially with height, whereas CO2 is well mixed). ... There is, however, a (climate-dependent) average distribution of optical properties and their alignment with temperature variations, and thus radiative forcing, and the resulting temperature change takes time (short term weather phenomena can actually be described to a large extent without taking into account much radiation, except for the diurnal solar heating cycle). Clouds and humidity cannot realistically be rearranged relative to the horizontal and vertical distribution of temperature with infinite freedom; some things are linked by simple physics and some things correspond predictably because of the basic structure of the atmosphere and it's long-term climate (diurnal and annual cycles, land-sea and other geographical heating contrasts, the coriolis effect, Hadley cells, Walker circulation, monsoons, subtropical dry belts, midlatitude storm tracks, wind-driven and thermohaline ocean circulation, mesoscale convection phenomena, characteristics of variability in QBO, ENSO, NAM and SAM, PDO, AMO, etc, inertial oscillations, inertio-gravity waves, Rossby waves, ...). The global average radiative forcing by mathematical definition corresponds to a global average radiative heating rate below the level considered; if the level forms a closed surface, that heating, however horizontally distributed, cannot simply leak out without some change in climate itself - increased temperature to increase the net LW flux out to balance the radiative forcing + any radiative feedbacks. -------------- (When in climatic equilibrium, the Earth loses heat to space by LW emission at the same rate as it absorbs SW radiation (plus a TINY fudge factor for geothermal and tidal heating). This is a necessary but not sufficient condition for a climatic equilibrium, because climate change can in principle involve spatial and seasonal rearrangements of radiative heating and cooling and the convection/advection that balances them when averaged over fluctuations that could result in zero global-time average change in radiant fluxes. However, there are tendencies for the climate to behave in some ways and not others for any given set of solar, greenhouse, aerosol, geographic, biologic, and orbital (Milankovitch) forcings, etc.); a longer term equilibrium climate can be defined that includes patterns/textures of cyclical and/or chaotic shorter term variability, both from internal variability and from forcing cycles and fluctuations on the shorter time scales (annual and daily cycles, volcanic eruptions (when the statistics of such short term episodic events do not vary over longer time periods, then the resulting short term climate fluctuations can be incorporated into a description of longer-term equilibrium climate). -------------- 1b. There are daily, seasonal, latitudinal and regional, and weather-related and interannual variations in the distribution of convection and vertical stability in particular. Because much or most latent heating is associated with precipitation that reaches the surface, regions of descent are often dry; descent is also often slow over large areas and so adiabatic warming may be balanced by radiative cooling. Horizontal heat transport in the air from regions where much heat is convected from the surface can produce regions where the air is stable to localized overturning; this is especially true of polar regions in winter, where the surface and lowermost air is often or generally colder than some of the higher tropospheric air. Over land, there is a significant diurnal temperature cycle at and near the surface that is not matched by a similar cycle above - this is because a majority of solar heating is concentrated near the surface over a smaller heat capacity (in sufficiently deep water, there is a large heat capacity that damps short-term temperature cycling; finite thermal conductivity into soil and rock limits the depth available to supply heat capacity for radiative cycling as a function of frequency); thus, the daily high temperature near the surface is more coupled convectively to the temperatures in the rest of the troposphere than the nightime/morning low temperature. Horizontal temperature gradients can and do supply potential energy for large-scale overturning even when the air is locally stable to vertical convection, but this occurs more readily when the air is less stable; when air is more stable, a smaller amount of overturning is sufficient to eliminate horizontal temperature gradients by adiabatic cooling of rising air and warming of sinking air. There is a sort of large-scale convective/advective coupling of temperature change patterns, as either reduced horizontal temperature gradients or increased vertical stability will tend to reduce the large scale overturning (the Hadley cells, monsoons, Walker circulations, and the synoptic-scale circulations of strengthening baroclinic waves (the midlatitude storm track pressure systems and the jet stream undulations that correlate with them) - when any overturning on any scale increases, it reduces the tendency for more overturning by mixing heat horizontally and/or stabilizing the air to local vertical convection; a decrease in overturning has the opposite effect, so there is a tendency to approach an equilibrium overturning rate or at least fluctuate about such a rate; however, the spatial arrangment and category of overturning are a bit less constrained, allowing for internal (unforced) variability. And some circulation patterns (cumulus clouds and hurricanes in the short term, ENSO and some forms of storm track variability) can reinforce and strengthem themselves with feedbacks involving self-reinforcing distributions of latent heating and self-reinforcing momentum fluxes (but beyond some point, the midlatitude storm tracks are anchored to the way solar radiation varies with latitude, hurrican activity is regulated by sea surface temperatures and large scale circulation tendencies and temperature gradients, etc, and ENSO is in a way limited in magnitude by the width of the Pacific ocean - the warm water normally in the western tropical Pacific can only slosh back as far as the Americas)... The simple 1-dimensional globally representative model (describing everything in terms of a balance between vertical fluxes) also implies that the stratosphere is exactly in radiative equilibrium, but this is only approximately true for the global average. Some kinetic energy produced by overturning in the troposphere actually propogates (via Rossby waves and gravity waves) into the stratosphere and mesosphere and drives circulations there - that kinetic energy is converted to heat in the process, though it is a small amount - the larger effect, as I understand it - is large regional deviations from radiative equilibrium - sinking regions are adiabatically warmed, causing them to be warmer than the radiative equilibrium temperature, so they radiatively cool; rising regions do the opposite. (PS the QBO is a nearly-cyclical fluctuation of winds in the equatorial stratosphere that is driven by noncyclical fluxes of momentum from the troposphere, carried by a family of equatorial waves (including in particular Rossy-gravity and Kelvin waves); the cycle is self-organizing - the vertical distribution of winds in the stratosphere regulates where the momentum in different directions carried by different kinds of waves is actually deposited, so that regions of westerly and easterly flow alternately appear at higher levels and slowly propagate downward.) 2. While the temperature response of the surface and troposphere together tends to follow the (global-average) tropopause level forcing, the distribution of radiative forcing will affect the convection rates and thus the circulation patterns. However, except when a forcing is too idiosyncratic, the general tendency of the climate response to a positive tropopause level radiative forcing is: At the surface, greatest warming is in higher latitudes in winter where the albedo-feedback is strongest (the summer reduction of sea ice causes winter warming because the solar radiation is absorbed by water without much temperature increase, but this stored heat must then be released in the colder months before ice can reform). In the tropics, increased evaporative cooling is a negative feedback (at least over moist surfaces), but this is balanced by increased latent heating at higher levels - at low latitudes, the greatest warming will tend to be in the mid-to-upper troposphere because of the decrease in the moist adiabatic lapse rate. The stability of the air at high latitudes could help explain why high latitude warming is concentrated near the surface. Because of the opposite tendencies in the large-scale horizontal temperature gradients between lower and higher levels of the troposphere, the effect on baroclinic wave activity (midlatitude storm tracks) is not immediately clear, but more water vapor will be available for latent heating (the horizontal temperature gradient is a necessary condition for baroclinic waves but it is not their only fuel source), and perhaps the reduced vertical stability at higher levels might contribute to a poleward shift in activity (possibly with a positive cloud feedback on the storm tracks' subtropical flanks) - but there are other factors, including changes in the stratosphere and stratosphere-troposphere mechanical interactions (also affected by ozone depletion). The tropopause height will also increase (but is that more for greenhouse forcing than solar forcing?). Because of the dominance of the ocean in the Southern midlatitudes, the wind-driven upwelling of cold water (which, coming from below, will not warm much until the temperature signal of climate change has spread sufficiently through the deeper ocean), and the relative stability of much of the Antarctic Ice sheet (at least for a while) (as opposed to Arctic sea ice in particular), the near-surface high latitude polar warming will not be especially large relative to low latitudes in the the Southern Hemisphere, at least during the first few centuries (??). (Northern hemisphere land masses also have a seasonal snow albedo feedback.) The similarity of radiative feedbacks might overwhelm some differences in radiative forcings. The water vapor feedback in particular will have a much stronger radiative forcing at the surface than at the tropopause level (but the tropopause level water vapor feedback is sizable compared to the externally imposed forcing). Because of this, changes in vertical convection rates due to different forcing mechanisms might be more similar. (However, setting aside the radiative implications of the diurnal temperature cycle over land, the global average net convective cooling of the surface cannot get any larger than the direct solar heating of the surface; and precipiation (aside from dew and frost) can only balance evaporative surface cooling, which cannot exceed total convective cooling. Increasing the greenhouse effect will tend to increase precipiation but it cannot do so beyond such limits; aerosol cooling tends to decrease precipitation in a greater proportion to its effect on temperature, so balancing greenhouse warming with aerosol cooling would reduce precipiation in the global average. Where there is a regionally-concentrated forcing, such as by the Asian Brown Cloud, in which there is some tropospheric radiatively-forced warming but a negative radiative forcing at the surface, the temperature response at different levels on the same regional scale will not be coupled so much by convection; convection may be reduced in that region with perhaps some increase elsewhere depending on how much radiative forcing of each sign occurs, etc... The greenhouse effect tends to decrease the diurnal temperature cycle near the surface by decrease the relative importance of solar heating in the radiative energy budget - by increasing downward LW radiation by increasing LW opacity, and maybe by increasing LW radiation in both directions by increasing temperature (but only to the point that the net LW flux from the surface doesn't increase (??)). This is related to the larger diurnal temperature cycle found in higher elevations and clear nights with dry air. Wind can reduce the diurnal temperature variation by producing turbulence to mix heat downward at night when the surface is radiatively cooling. (Some feedbacks to global warming could regionally alter the surface temperature relative to temperature at other levels by affecting the rate of evapotraspiration.) (When there is sufficient solar heating on land, surface temperature is actually warmer than the air temperature just above it. The surface impedes effective convection, leaving thermal conduction and diffusion to transport heat and humidity from the surface to the air and within that very thin layer of air next to the surface. This doesn't destroy the convective coupling of surface temperature to air temperature, but it adds another chain in the link.) ------------ (to be continued...)
  6. Does ocean cooling disprove global warming?
    Reply to #5: I think the total amount of historical experience is also smaller with Argo than with XBT so, from a rhetorical standpoint, one may be able to argue that Argo isn't as reliable (still getting the kinks out) or wasn't as reliable early on. I work for an agency that uses hydroacoustics to estimate salmon runs -- the agency sometimes switches to newer technology. Of course, it does so to improve accuracy and precision, but early on in the transitional overlap period it would be a mistake to assume the new method is better, even though the agency expects that to eventually be the case.
  7. Does ocean cooling disprove global warming?
    #2 response [ Response: I believe Argo is designed to have more extensive coverage. The Argo homepage talks about how sparse measurements were before the Argo network was deployed (although they might be talking themselves up a bit on this page). ] So argo is at least designed to be a more accurate and extensive mesurement. So if argo dat is not coinciding with XBT data wouldnt it make sense to more rigorously question XBT data, rasther than the other way around ??? look i know nothing about argo or XBT or any of this- just trying to apply Popper and socrates a bit and see where it leads us
  8. Does ocean cooling disprove global warming?
    I feel woefully undereducated on this and should read the papers. But ... why tell you when I can show you?: The most striking feature of Figs 1 & 3, to me, are the seasonal pattern of ocean head content. The peak occurs in Autumn (southern hemisphere) every year. I imagine this is because most of the ocean is in the southern hemisphere and so has completed the half year in which it receives most of its solar energy. Two lazily considered ideas relevant to the discussion of the previous post: (1) measurement has to be pretty good for both Argo and XBT to resolve this signal (the signal is much stronger than noise on a seasonal scale), but it looks like Willis reconstructs this feature better than Leuliette in Fig 3; (2) if the total ocean heat content (estimated from the upper layer) can fluctuate this greatly among seasons, then surely it should be able to deviate from a monotonic annual increase. Both aspects of the first lazy idea argue for recent global cooling, I guess; the second lazy idea, if valid, would argue against it. Sorry for being so lazy! The other thing, though, that might be worth mentioning, is that steric sea level (Fig 4) doesn't seem to resolve any seasonal cycle. Does this suggest that resolution of the seasonal cycle is a poor criterion for evaluating this stuff or does it mean that Cazenave's method is less reliable?
    Response: I should've clarified in the figures but Figure 4 shows the steric sea level with the seasonal element removed. This enables you to more clearly determine the trend. Figure 3 does not have the seasonal signal removed. Steric sea level does have a strong seasonal cycle.

    In fact, Leuliette 2009 has an interesting discussion on the seasonal signal. They find that there is a strong seasonal signal of 8mm per year due to ocean mass change, peaking in the Northern Hemisphere summer. Eg - ice melt in the north. The steric sea level peaks in the Southern Hemisphere summer as most of the ocean is in the south, with an amplitude of 3.9mm. Both signals cancel each other out somewhat with the resultant global signal being around 4.2mm.
  9. Dan Pangburn at 12:50 PM on 18 May 2009
    It's the sun
    Ginckgo 382: The assessment using Control Theory described at 380 shows that atmospheric carbon dioxide level change, during the previous glacial period, had no significant influence on temperature change. The logarithmic decline of influence with increased concentration shows that CO2 has even less effect at the higher current level. This is all described further at the pdf linked from http://climaterealists.com/index.php?tid=145&linkbox=true
  10. Misinterpreting a retraction of rising sea level predictions
    oh and yes any hypothesis must be falsifiable that it means that there must be a clear testable means ( now or in the future) wherby you say that if X is true the hypothesis must be false. so how do we falsify AGW. what X must be true for AGW to be falsifiable.
  11. Dan Pangburn at 12:25 PM on 18 May 2009
    It's the sun
    Gord: What you describe, different ratios of temperature-change/CO2-change at paleo time vs. 20th century, corroborates that CO2 does not drive temperature. Another analysis that looks at atmospheric carbon dioxide level change vs. temperature change can be seen in a video at http://www.climate-skeptic.com/ . Correlation does not prove causation but lack of correlation proves lack of causation. The lack of correlation of the sequence of 30 year long up and down trends of temperature during the 20th century with the smoothly rising temperature proves lack of causation, i.e. that CO2 level did not drive temperature. Measurements made during the last decade also corroborate this. Since 2000, atmospheric carbon dioxide has increased 18.4% of the increase from 1800 to 2000. According to the average of the five reporting agencies, the trend of average global temperatures since 1998 shows no significant increase and for the seven years ending with 2008 the trend shows a DECREASE of 1.8 C°/century. This separation of trends corroborates the lack of significant connection between atmospheric carbon dioxide increase and average global temperature. I wonder how wide the separation will need to get before the IPCC and a lot of others are forced to realize that maybe they missed something.
  12. Misinterpreting a retraction of rising sea level predictions
    re # 2 "The Society keeps members informed on current news and activities through the regular distribution of the bi-monthly Bulletin of the Australian Meteorological and Oceanographic Society." That does not sound like a peer review journal to me. Sounds more like an academy mouthpiece. However, I do not know anything about the journal, this is just what i picked up at their website. re # 9 "Since the expectation of GW is the result of the framework theory, it has to be DISPROVEN to be invalidated." that is not how science works You generate a hypothesis you find supporting data if over the years ANY data is found that disproves the hypothesis. The hypothesis is wrong. or at least that is the scientific metyhod i have been used to in my line of work. Karl popper agrees.
  13. Ian Forrester at 12:10 PM on 18 May 2009
    Does ocean cooling disprove global warming?
    There is a good discussion on this on Physics Forums: http://www.physicsforums.com/showthread.php?t=311982 Just skip over the posts by Saul. The missing piece in this jigsaw is the amount of heat which is transferred into the deeper ocean. ARGO mostly measure up to about 700 meters. Some floats do go deeper but they are a small percentage of total. I think that most people have a hard time understanding that warm water can sink because simple physics tells them that warm water is less dense than colder water and should float. However, there is another contributing factor to density and that is salinity. As the surface waters warm and evaporate the water that is left becomes slightly more saline. As this keeps on recurring the increased density from evaporation causes an inversion (similar to what happens in lakes) and the surface water sinks to deeper depths carrying heat with it. This would occur on a cyclic basis but I have no idea how long it will take for the water to increase in salinity till it is dense enough to sink. Anyone have any thought on this?
  14. Does ocean cooling disprove global warming?
    Just trying to understand both points of view and to make up my mind..... for starters why was the argo system deployed ? was it more accurate than XBT ? Did it have more extensive coverage than XBT ? was xpt just running out of steam and needed replacement?
    Response: I believe Argo is designed to have more extensive coverage. The Argo homepage talks about how sparse measurements were before the Argo network was deployed (although they might be talking themselves up a bit on this page).
  15. Philippe Chantreau at 10:25 AM on 18 May 2009
    Does ocean cooling disprove global warming?
    Nice overview John. I still don't see where the logic is to say that oceans should be warming uniformly, without any kind of noise.
  16. It's the sun
    ginckgo - good point. Dan Pangburn - Well, I don't see the value in using control theory if climate science has already advanced in every way beyond where control theory would be helpful. If control theory works, it must be more sophisticated than as suggested by your example, because you're results are incorrect. "Repeatedly during the last and previous glacial periods, a temperature increasing trend changed to a decreasing trend and vice versa. This is not possible if there is significant net positive feedback from temperature." This ignores the possibility that the temperature variations were externally forced. Positive feedback causes a cyclic variation in response to a cyclic forcing to be larger in amplitude than otherwise. It also ignores that feedback mechanisms work differently on different time scales: In the shortest time periods, climate change response to a high frequency forcing tends to be damped by thermal inertia (heat capacity), although if modes of internal variability (unforced fluctuations, such as QBO, ENSO...) resonate somehow with forcing ...(?) - but also, in doing analysis, one can not assume that any variation within some interval of the spectrum of frequencies is actually being excited by external forcings with those frequencies, because, though alterable by external forcings, some internal variability will occur without any fluctuating forcing (QBO, ENSO, NAM and SAM, AMO? etc...). When temperature does change in response to external forcing, nearly instantaneous positive feedbacks include water vapor. Clouds will also be a nearly instantaneous feedback, but it is not so clearly and/or generally positive. Over longer periods of time, seasonal snow can be a positive feedback. Sea ice changes can be a positive feedback. Generally over longer timescales (especially during cooling, because snow can only accumulate as rapidly as it precipiates, whereas melting and distingration of ice sheets can occur faster (with uncertainty)), glaciers and ice sheets, and changes in vegetation (forests vs grasses vs deserts, etc.) can be positive feedbacks. Changes in the more rapid portions of the carbon cycle (soil, vegetation, atmosphere, oceans) can also be a (positive) feedback. BUT over even longer periods of time, the very slow CO2 removal from the atmosphere by chemical weathering and geologic storage by generally slow organic C burial tends to balance geologic emissions of CO2. Changes in geologic emissions and changes in topography, land surface composition, and geography can force the atmospheric CO2 level, but resulting changes in climate tend to cause changes in chemical weathering so as to reach a new equilibrium CO2 level; furthermore, chemical weathering tends to act as a negative feedback to climate forcing by other causes (with some complexities - it depends on geography and rock composition, etc...). "With this knowledge and the knowledge of the logarithmic decline in effectiveness of added atmospheric carbon dioxide it is obvious that there is no significant net positive feedback from increased average global temperature." The logarithmic proportionality of radiative forcing to CO2 level has no direct bearing on the climate sensitivity to radiative forcing. "This IPCC prediction is probably still high because of faulty cloud parameterization, etc." Actually, cloud feedback in climate models is small and ranges from negative to positive; the dominant positive feedbacks are water vapor and albedo.
  17. It's the sun
    How does the likely possibility that CO2 has not caused of every single change in climate in the past, preclude it from being a significant cause at the moment? You guys do see the fallacy in insisting that, considering the complexity of the system, right?
  18. It's the sun
    Dan Pangburn - The Vostok Ice core data also show that the relationship between the Earth's temp and CO2 levels is probably linear relationship. I once plotted the the Vostok graphs on a computer using AutoCad and measured the change in temp vs the change in CO2 levels. Although this was just a crude approximation because I did not use actual data (just the graphs and only at a few points), the results showed that the change in CO2 divided by the change in temp was a constant (or very close). Because the change in CO2 divided by the change in temp is a derivative and produced a constant, this indicates that the equation describing the the relationship between temp and CO2 is probably linear. -------------------- The following is a re-post of what I posted on another forum a few years ago: --------------------------------- --------------------------------- The IPCC uses this formula for an approximate calculation of CO2's relationship to changes in W/m^2 forcing EXCLUDING AMPLIFICATION(I will call it delta F). delta F = 5.35 LN( C/Co) where LN is the natural logarithm, Co is the CO2 in ppm for a starting point, C is the CO2 in ppm for analysis and F is the forcing in W/m^2. The IPCC also uses a figure of 0.297 deg C change per each W/m^2. If we multiply both sides of the formula by 0.297 we obtain the relationship: delta T = 1.59 LN ( C/Co) where delta T is the change in temperature (in deg C). ------------------ A way to determine the "approximate" amplification factor that the IPCC uses for CO2. If the CO2 has gone from 1ppm to 290ppm (guesstimate for pre-industrial time) then delta T = 1.59 LN (290/1)= 9.02 deg C. The AGW'ers say the Earth has warmed by about 33 deg C due to the Greenhouse effect, so 33/9.02 = 3.66 must be the Maximum amplification factor possible. ------------------------ The Past and Future of Climate by David Archibald http://www.warwickhughes.com/agri/pastandfuture2.pdf Atmospheric CO2 vs Earth Temperature During the Ice Ages The Ice Ages (Figure 7) shows the biggest variances (interpolating) for Temp is 13 deg C (+3 to -10) and CO2 is 120ppm (180 to 300). This is about 330 thousand years ago. Using the above formula delta T = 1.59 LN (300/180)= 0.812 deg C The ratio for Actual CO2 change to Actual Temp change is 120ppm/13 deg C = 9.23 The "amplification factor" for CO2 would have to be 13/0.812 = 16.0!! Now look at a portion of the graph where the changes are less (eg. 215 thousand years ago) The variances are..Temp variance is about 3.2 deg C (-1.8 to -5) and the CO2 variance is about 30ppm (230 to 260) Using the above formula delta T = 1.59 LN (260/230)= 0.195 deg C The ratio for Actual CO2 change to Actual Temp change is 30ppm/3.2 deg C = 9.38 And, the "amplification factor" for CO2 would have to be 3.2/0.195 = 16.4 ! Clearly, the "amplification factor" varies so much, it is pure fiction....3.66 for the "Greenhouse Effect" vs about 16 for the Ice Ages! But, the MOST IMPORTANT thing this analysis shows is that, the CHANGE IN CO2 divided by CHANGE IN TEMP is really a CONSTANT (9.23 vs 9.38). The CHANGE IN TEMP divided by CHANGE IN CO2 is a DERIVATIVE that produced a CONSTANT. This means that the mathematical equation relating CO2 and TEMP HAS TO BE A LINEAR FUNCTION or close to it. Further, evidence of the LINEAR relationship is very apparent in the cyclical nature of CO2 vs TEMP in the Ice Ages graph. First, TEMP leads CO2 by about 800 years....CO2 follows TEMP LINEARLY! We know that the SUN's activity is cyclical in nature and CO2 absorbtion and release by the Oceans is governed by temperature. Temperature DRIVES CO2 production.....simple CAUSE and EFFECT. --------------------- If CO2 were assumed to "somehow" cause the the temperature changes (as the AGW'ers want us to believe) then: 1. It would HAVE to LEAD temperature not FOLLOW it. 2. The CO2 production (volcanos, bio-mass decay etc) would HAVE to occur in a "cycle" that produced the same sequence of events to produce the CO2 with the same regularity over about 400 THOUSAND YEARS!!! I would suggest that the probability of this happening is about ZERO. -------------------------- -------------------------- End of the re-post. Dan have you looked into this as well?
  19. Ice age predicted in the 70s
    I was struck by this week's skeptic article (by David Deming in "The American Thinker"), [http://skepticalscience.com/article.php?a=2327] finding it both laughable and inspiring, and it drew me back to here. One thing that surprised me a bit was Deming's claim that we don't know what causes ice ages. I thought it was Milankovitch cycles mostly (Deming says Ike Winograd disproved that). With the google I only found a Wunsch abstract [http://tinyurl.com/qg3bgw] that says orbital changes only explain 20% of the variance in climate records studies. Anyway, I'm curious to learn more about our understanding of ice ages.
  20. Dan Pangburn at 10:58 AM on 17 May 2009
    It's the sun
    The physics is the same, of course. However, most in the Climate Science Community are unaware of the science (which includes the physics) of Control System Theory. Control Theory should more properly be called Control Science, or better yet, Control Engineering since it has multiple practical common applications such as automobile cruise control, aircraft autopilot, missile guidance, electronic circuits, etc. etc. Control Theory is usually taught in mechanical, electrical and aeronautical engineering graduate school and is not in the Climate Science curriculum. Those who understand Control Theory have the knowledge to recognize that earth’s climate can be evaluated as a dynamic system with feedback. In the analysis, all of the minutia of weather and climate, whether known or not, get lumped together (in the control/plant which, by definition, includes all factors that influence average global temperature). The output, as archived in the ubiquitous Antarctic ice core data is extracted as temperature anomalies. Repeatedly during the last and previous glacial periods, a temperature increasing trend changed to a decreasing trend and vice versa. This is not possible if there is significant net positive feedback from temperature. It is not necessary to explicitly describe any of the factors in the control/plant (as used in Control Theory) to determine whether net feedback, if significant, is positive or negative. The average global temperature does not need to be known accurately just reasonable valid relatively. With this knowledge and the knowledge of the logarithmic decline in effectiveness of added atmospheric carbon dioxide it is obvious that there is no significant net positive feedback from increased average global temperature. Atmospheric/Oceanic General Circulation Models, AOGCMs, include the circulation effects of atmosphere and ocean. Climate Scientists use these global climate models to predict future climate. Although there may be no explicit input parameter for feedback in the AOGCMs, when used to predict future climate they incorporate features that result in significant net positive feedback. Without significant net positive feedback AOGCMs do not predict significant global warming. Zero feedback results in 1.2°C from doubling of atmospheric carbon dioxide per p631 of ch8 of UN IPCC AR4 (this 5.84 mb pdf file can be viewed and/or downloaded from http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1_Print_Ch08.pdf ). This IPCC prediction is probably still high because of faulty cloud parameterization, etc. Unless overwhelmed by other factors, an insignificant temperature increase of less than a degree Celsius, most of which has already taken place, is expected from doubling atmospheric carbon dioxide from the pre-industrial-revolution level of about 275 ppmv. See the pdf linked from http://climaterealists.com/index.php?tid=145&linkbox=true for a more extensive discussion and graphs.
  21. Volcanoes emit more CO2 than humans
    This is cut and paste from the original article that I can't locate: Although scientists understand the mechanics of El Nino, its origins have yet to be determined. The new theory [of the cause of El Nino] suggests that the primary mover behind El Nino is hot magma welling up between tectonic plates on the Pacific sea-floor. The upwelling magma heats the overlying waters enough to affect the ocean surface, initiating the cascade of events that brings on the wrath of El Nino. This, while not the same source says the same thing: Hot Vents and Global Climate Every two to seven years a climatic disturbance brings floods to California, droughts to Australia, and famine to Africa . Known as El Nino, it is essentially a warming of surface waters in the eastern Pacific near the equator. Although scientists understand the mechanics of El Nino, its origins have yet to be determined. Most believe that the interaction between the atmosphere and the sea somehow generates this climatic disturbance that wreaks havoc upon those regions of the world that lie in its path. But now a new theory on the origins of El Nino has been proposed and, surprisingly, it has very little to do with the atmosphere or the sea. The new theory suggests that the primary mover behind El Nino is hot magma welling up between tectonic plates on the Pacific sea-floor. The upwelling magma heats the overlying waters enough to affect the ocean surface, initiating the cascade of events that brings on the wrath of El Nino. http://www.platetectonics.com/book/page_20.asp
  22. Volcanoes emit more CO2 than humans
    I give up. When I first looked to find the cause there was one page of search results now there are hundreds.
  23. Volcanoes emit more CO2 than humans
    Here is a different view: As far as deep-ocean vents modifying the ocean temperatures, researchers now think that this source of heat does contribute to the long-term evolution of the ocean state. We can trace the chemical signatures of sea floor venting carried for quite a distance in the deep currents. Those traces are useful for estimating the deep flows, which are difficult and expensive to measure directly since they are so slow. However, we observe that the heating due to deep venting becomes diluted in the vast reaches of the abyssal ocean and therefore does not make quick changes in the ocean state. These affects are felt over decades or centuries, not on the relatively rapid time scale of El Niño. It is indeed tempting to look for simple causes of complex oscillations like the El Niño cycle. Unfortunately (or perhaps fortunately for those of us who like scientific challenges), it seems that the ocean-atmosphere system is well capable of generating these oscillations on its own, and the task now is to understand how this happens. Volcanoes and sea floor venting are part of the slowly changing background state to which phenomena like El Niño are added, and they increase the complexity of the task. http://www.pbs.org/wgbh/nova/elnino/resources/elninofaq.html Sorry, I still can't where the hypothesis is spelled out.
  24. Volcanoes emit more CO2 than humans
    The real cause of El Ninos is still obscure. However, the recent discovery of over 1,000 previously unmapped submarine volcanos rising from the seafloor in the eastern Pacific may lead to El Nino's source. The synchronous eruption of, say, 100 of these volcanos might warm the ocean around Easter Island a tad---just enough to warm the atmosphere above a bit---resulting in a shift of the high pressure area. The area of intense volcanic activity covers 55,000 square miles of sea floor where the Pacific and Nazca plates are separating. In addition to the active volcanos, many plumes of 800°F water gush from the sea floor in this area. The volcano-El Nino link is, therefore, not so far-fetched. (Nash, Nathaniel C.; "Volcano Group in Pacific May Cause El Nino," Pittsburgh Post_Gazette, February 14, 1993. Cr. E. Fegert) Comment. If submarine volcanos do cause the El Ninos, and the El Ninos are periodic, the submarine volcanism would have to be periodic, too. This implies an unrecognized rhythm in the earth's internal fires. - http://fusionanomaly.net/elnino.html
  25. Volcanoes emit more CO2 than humans
    Sometimes, and for reasons not fully understood, the trade winds do not replenish, or even reverse direction to blow from west to east. When this happens, the ocean responds in a several ways. Warm surface waters from the large, warm pool east of Indonesia begin to move eastward. Moreover, the natural spring warming in the central Pacific is allowed to continue and also spread eastward through the summer and fall. Beneath the surface, the thermocline along the equator flattens as the warm waters at the surface effectively act as a 300-foot-deep cap preventing the colder, deeper waters from upwelling. As a result, the large central and eastern Pacific regions warm up (over a period of about 6 months) into an El Niño. On average, these waters warm by 3° to 5°F, but in some places the waters can peak at more than 10°F higher than normal (up from temperatures in the low 70s Fahrenheit, to the high 80s). In the east, as temperatures increase, the water expands, causing sea levels to rise anywhere from inches to as much as a foot. But in the western Pacific, sea level drops as much of the warm surface water flows eastward. During the 1982-83 El Niño, this drop in sea level exposed and destroyed upper layers of coral reefs surrounding many western Pacific islands. http://earthobservatory.nasa.gov/Features/ElNino/elnino.php Yeah, I know that you really did want to know that either.
  26. Volcanoes emit more CO2 than humans
    ps Dr. S.D. Meyers and Dr. J.J. O'Brien. "Variations in Mauna Loa carbon dioxide induced by ENSO" Which I wanted to link for you has been surpressed by the new regime but is worth reading if you can find a bootleg copy.
  27. Volcanoes emit more CO2 than humans
    Note "Study: Volcanoes Unleash El Niño" http://dsc.discovery.com/news/afp/20031117/elnino.html is about the symptoms, not the cause.
  28. Volcanoes emit more CO2 than humans
    As I said chris, When I relocate the article I will post it here. I had not realized just how misunderstood this science was. This explains in part how the ocean drives the atmospheric currents known as Trade Currents. http://www7.nationalacademies.org/opus/elnino.html or http://www7.nationalacademies.org/opus/elnino_PDF.pdf It does not explain the thermocline fully however so I'll try to keep finding something on it's root cause that can be linked to.
  29. It's the sun
    "Feedback Control Theory " How is that different from climate model physics?
  30. It's the sun
    TrueSceptic - Yes, he is a sceptic. He is also a male, a human being, a consumer, a professor, wears pants, etc....does that hold any particular significance for you? Like I said... "I certainly agree with you that Feedback Control Theory is totally lacking in the field of Climatology." It seems that you somehow totally missed the point,...I was commenting about the curriculum of Climatology as discussed by Dan Pangburn. It should be evident to you that field of Climatology includes some "AGW sceptics"....they all share the same curriculum.
  31. It's the sun
    Hmmm...astonishly honest as well....
  32. It's the sun
    373 Gord, _I remember reading an article by a leading Climatogist (a Ph.D and AGW sceptic) that had "discovered" that Feedback and Control theory was being taught in the building next to his....the faculty of Electrical Engineering. He briefly described a simple single feedback loop control system. He seemed amazed that this technology even existed. He certainly had no idea that feedback and control system concepts have commonly been used electronic circuit designs since the invention of the vacuum tube._ Really? This is astonishing ignorance, and did you say he's a "sceptic"?
  33. Arctic sea ice melt - natural or man-made?
    "A lot for you, nothing to the Earth. Everything is relative. " It was an analogy, Quietman. There are actually over 700 billion tons of C in the atmosphere in the form of CO2. Anthropogenic emissions could easily double atmospheric CO2. On a per molecule basis, CH4 is certainly a stronger greenhouse gas than CO2, and CO2 may be stronger than H2O vapor, but there's a lot more H2O in the atmosphere than CO2 (although there are variations in concentration such that H2O has less effect than it would if it were well-mixed), and much more CO2 than CH4. Etc. There is much less of any of these than there are N2 and O2, but N2 and O2 have little effect on LW radiation. Of course, the per molecule strength of a gas depends on overlap with other gases and with itself - these things depend on the concentration; for example, the radiative forcing of CO2 is roughly logarithically proportional to CO2 amount within a range of values. ------ "The science isn't settled." Depends on which part of the science. I never claimed that ever last piece of the puzzle had been fit together. What we know: Human activity has caused a dramatic and rapid increase in atmospheric CO2 and is still adding to that, pushing the atmospheric CO2 level to well above levels seen for hundreds of thousands of years. Human activity has also added other greenhouse gases. The mechanism of radiative forcing of climate is settled. Changes in greenhouse gas levels have made important contributions to climate change in the past, both as externally forced changes (volcanic activity and other geologic emissions, tectonically/mineralogically forced changes chemical weathering, changes in the C cycle due to biological evolution) and as feedbacks (orbitally-forced glaciations/deglaciations and monsoon changes, changes in solar TSI over 100s of millions of years, biological evolution, other climate changes). Water vapor and snow and ice albedo are important positive feedbacks. The best estimate of climate sensitivity from physics, paleoclimate, and the historical record is about 3 deg C per doubling of CO2 (or its radiative equivalent, adjusting for efficacy of different forcing agents), give or take roughly 1 deg C or so. Climate sensitivity from the paleoclimatic record can be problematic because climate sensivity could vary as a function of climate itself (and perhaps geography/geology and biological evolution); the climate sensitivity determined by greenhouse gas changes between preindustrial time and the last ice age may be larger than the climate sensitivity now because there is less ice sheet area available to melt/disintegrate and the snow and ice is more confined higher latitudes; however, Hansen's calculation of a 3 (+/- 1 ?) deg C for the radiative equivalent of a doubling of CO2 is actually calculated from the radiative forcing of greenhouse gases, ice sheets, aerosols, and land albedo changes from vegetation, and thus the climate sensitivity to greenhouse gas forcing and other anthropogenic forcings could be greater than that, as any ice sheet and vegetation responses would be feedbacks in AGW context. (Off hand I am not sure if sea ice albedo was included in Hansen's forcings; I think it was not. I inferred that nnow cover, along with water vapor and clouds, were treated as feedbacks. Snow cover would have extended to lower latitudes in the ice ages, but some higher latitude snow cover would be replaced by ice sheets, and the total area of seasonal snow might actually have been less (??), although it would have been at lower latitudes...)); however, there is evidence for a relationship even farther back in time than the last several ice ages, going back hundreds of millions of years; the Earth has been both warmer and cooler in the past. A persuasive case that there is some strong negative feedback missed by climate models is lacking. There are also both largely settled and unsettled aspects to what climate change means on the regional level. Greenhouse effect-driven warming will tend to warm the surface and troposphere but cool the upper atmosphere; solar forcing tends to warm both or cool both; volcanic aerosols can cause warming in the stratosphere while cooling the surface and troposphere. Any surface and tropospheric warming will tend to be enhanced in the mid-to-upper troposphere at lower latitudes (due to a moist adiabatic lapse rate feedback) and at higher latitudes near the surface (due to snow and ice albedo feedbacks and perhaps alsob because of the relatively larger vertical static stability in the air)(except, at least at first, in the Southern hemisphere due to the Antarctic Ice Sheet's stability, cold upwelling water driven by winds, and the dominance of water and lack of land in southern midlatitudes). Sea level will rise from thermal expansion of water and from melting glaciers and land ice (and not just until 2100); it will not be perfectly the same everywhere because regional sea level variations are caused by wind and temperature variations. Generally, a greater portion of precipitation will come in shorter time intervals at any given location. There is some expectation that midlatitude storm tracks will shift poleward, with drying trends on their subtropical flanks. Depending on how much more moisture the soil can hold in the spring from winter melt, there may be significant drying in midlatitude continents in summer in particular if extra precipitation in the winter is lost to runoff. There are significant costs to adapting to large, rapid, sustained changes into relatively unfamiliar conditions; if taken far enough, such change leads to mass extinctions. Ecosystems are stressed by such changes. The economy is an ecosystem and it depends in part on the larger natural ecosystems. Human society is obviously capable of rapid evolution, but this can still involve much pain, and that can be amplified by an evolved expecation of modern comforts, as well as population growth and politics (somewhat unlike in the stone age, it is not a simple matter to pack up one's belongings and just migrate; even if you are poor enough to carry all you own, borders and property rights get in the way). Buildings and infrastruture have been designed for conditions and will need adjustments. Agricultural productivity will decrease in the tropics; it may increase at first at higher latitudes, but only up to a point; tropical conditions are not kind to some valued food crops; the growing season cannot get any longer than a full year and growing season quality is important. Some crops are photoperiod sensitive. Breeding new crop varieties takes time and effort. There is great concern about fresh water availability as glaciers melt (regularity is important, not just total amount). Warming could increase risk and spread of some tropical diseases. Loss of biodiversity is a cost; biodiversity is a resource for new crops, drugs, etc. There is a great concentration of people near sea level. Uncertainty in climate change could itself be a cost because uncertainty hinders planning (there will always be uncertainty in the future climate, human effects or not, but presumably the total uncertainty is greater when there remains natural fluctuation and uncertainty in climate response to anthropogenic forcing). Even if adaptation were easier than mitigation (although it is not an either-or issue but a question of how much of each), it makes sense that the benificiaries of climate-change causing activities should pay the costs of climate change (the market response to that imposed price signal would tend to favor mitigating economic pathways - efficiency and clean energy, etc.). Even with various levels of uncertainty, there are actions for which an actionable level of inteligence will have been met. Even decades ago, it made sense to invest in clean energy and energy efficiency technology, at least to have it available to deploy with sufficient pace, as an insurance policy for the risk that global warming would be a problem. We have reason now to actually impose a price signal on emissions (or some other policy) to shift the economy towards greater demand of and investment in clean energy and energy efficiency as well as other emissions-reducing pathways. I do agree that there is room for debate about how large that price signal should be, because the science is not FULLY settled (it is likely it never will be FULLY settled).
  34. Water vapor is the most powerful greenhouse gas
    Anybody read this http://www.landshape.org/dokuwiki/doku.php?id=introduction which is an outline of a new climate 'theory' by Ferenc Miskolczi (ex NASA mathemetician) and if so...any comments?
  35. A broader view of sea level rise
    #32 Ron: Hmmm, I thought you were asserting before that Argo disproved the concensus understanding of AGW. Now it seems you are saying that Argo and a bunch of other stuff suggest to you that AGW won't be "catastrophic". That seems like progress to me, but maybe I never knew what you meant. If you define "catastrophic" I'll be more likely to understand your perspective now. John, I thought I remembered a post of yours on effects of the solar cycle on temperature but I couldn't find it. Is it still around somewhere?
    Response: Here's the post on solar cycles. Note - it cites a recent paper that finds the solar cycle imposes a 0.18C signal on the temperature record. There are other papers that find around a 0.1C signal. I've since come to think its more likely to be the 0.1C signal as the strong signal Tung finds goes out of phase as you go further into the past.
  36. It's the sun
    Relative to the 'it's the sun' thread.... icecap.us/images/uploads/REVISITINGTHEANALOGUEFORTHECOMINGICEAGE.pdf - presents an interesting view on AGW models and the results obtained from them.
  37. A broader view of sea level rise
    re #28 1. CO2 variability. a. Contrary to your assertion Ron, enhanced CO2 emissions during the last couple of decades do seem to be associated with enhanced atmospheric CO2 accumulation. We can inspect the atmospheric CO2 data: http://www.esrl.noaa.gov/gmd/ccgg/trends/ and find that the averaged yearly CO2 accumulation in the atmosphere for the decade 1990-1999 was 1.50 ppm per year and for the (not quite) decade 2000-2008 was 1.98 ppm per year. b. It shouldn’t be hard to “swallow” a relatively narrow range of CO variability since that’s what the evidence and our understanding of the carbon cycle indicates: (i) In a stable climate system with no change in external forcings (no volcanoes or, changes in solar output, greenhouse gases etc), there will still be some year on year variation in the atmospheric CO2. For example, in or shortly after El Nino years the CO2 levels rise due to heat and moisture stress in the tropical rainforest belts; in or after La Nina's tropical forests recover their growth and CO2 levels in the atmosphere drop somewhat. However that will just yield variation around a rather steady level. Atmospheric CO2 levels can't undergo extended continual unforced rises and falls without some sort of phenomenon external to the climate system, because there is a pretty fixed amount of accessible carbon in the short term carbon cycle. So on the decadal, centennial, millenial timescale the atmospheric CO2 levels aren't expected to change that much. In fact it's an indication of the rather steady nature of the accessible carbon in the short term carbon cycle that over tens and hundreds of thousands of years through numerous glacial-interglacial cycles, the atmospheric CO2 levels tend to return to interglacial values within a few ppm of 280 ppm. If one of the carbon pools (oceans/atmosphere/terrestrial) is perturbed, then the carbon will be redistributed. If deforestation and other land use changes reduces the carbon stored in the terrestrial pool and the atmospheric (and ocean) levels will rise. That seems to be the origin of much of the enhanced accumulation of CO2 in the atmosphere through the 19th century [N2O and methane rise follows a similar trajectory – see MacFarling Meure paper cited in post #23; see also the link on land use contributions to enhanced CO2 levels in Philippe Chantreau’s post #25]. Obviously if the climate system isn't stable and external forcings change (variation in solar output/major periods of volcanic activity and so on) then atmospheric CO2 levels will respond somewhat. That seems to be the origin of the small reductions of atmospheric CO2 through the period of the LIA….and so on… 2. You’ve misrepresented my statement:
    ”It's very easy to calculate that within a climate sensitivity right in the centre of the likely range (3 oC of warming per doubling of atmospheric CO2), the enhanced greenhouse warming during the two periods is 0.15 oC and 0.13 oC, respectively.”
    by contracting it to "the enhanced greenhouse warming during the two periods is 0.15 oC and 0.13 oC, respectively." …and then engaged in trashing your own misrepresentation! The point is that all else being equal, a rise in atmospheric CO2 from 286 ppm (1850) – 309 ppm (1940) should produce a surface temperature rise at equilibrium of around 0.3 oC within a climate sensitivity of 3 oC of warming per doubling atmospheric CO2. Since a large amount of science indicates that is the “best estimate” for the climate sensitivity under current conditions, we shouldn’t be surprised to find that the world seems to have warmed significantly during this period, with increasing effects on sea levels, glacial recession and so on. Of course in the real world all else very likely isn’t equal. A small enhanced solar forcing in the first half of the 20th century likely contributed to warming. Very significant volcanic activity in the late 19th/early 20th century, “knocked back” temperature rises temporarily…and so on. But we can hardly assert that temperature rises won’t follow from enhanced greenhouse gas levels, when the most likely scenarios from scientific evidence/analysis indicates that they should! And it’s not about “pro-AGWers” whatever that might mean – it’s about the science and its associated evidence. Small persistent changes in greenhouse gas levels are expected to produce re-equilibration of the climate system towards new temperatures, not because “pro-AGWers” “think” so, but because that’s what the evidence, and our scientific understanding of the greenhouse effect indicates. ..and a 9 ppm change in atmospheric CO2 is certainly measurable!
  38. A broader view of sea level rise
    Ron Cram, You write "The assessment is also based on the climate sensitivity estimates by Schwartz and Chylek, Chylek's work on aerosols, Spencer's identification of a hew negative feedback over the tropics he identified as Lindzen's Infrared Iris Effect, and others." These assessments haven't held up too well. Comment on Chylek/Lohmann: http://www.clim-past.net/5/143/2009/cp-5-143-2009.html Basically, if you do some severe cherry-picking of data, you can find a lower climate sensitivity (or a much higher one as Annan illustrates). Comment on Scwhartz: http://www.jamstec.go.jp/frcgc/research/d5/jdannan/comment_on_schwartz.pdf As a result, Schwartz revised his estimate up about 50%, although not all the issues Annan et al found have been addressed. http://www.ecd.bnl.gov/steve/abstracts/HeatCapacityResponse.html Lindzen's hypothesis hasn't withstood the test of time, and has gone through various revisions. When one piece of data refutes a claim, it morphs until another piece is falsified. Chris Colose exposes some key problems with Lindzen's latest claims, and there's some clear evidence that Lindzen has a problem admitting error. http://chriscolose.wordpress.com/2009/03/31/lindzen-on-climate-feedback/ As for Spencer, what can I say? The UAH dataset has been revised upward more times than I can count. At one time he used his own flawed data to claim everyone else was wrong. The fact that he's working hard to find a negative feedback shouldn't surprise anyone.
  39. A broader view of sea level rise
    Ron Cram, ""credibility" is not a factor under consideration" Really? You seemed to understand that a journal's reputability is important, given your comment in #4: "Roger Pielke, the ISI highly cited climatologist I referenced above" What changed? It's not really a choice for contrarians to publish in E&E. They do so because their studies are usually very weak and can't pass a single independent peer review in dozens of reputable journals. Keep in mind that this doesn't imply anything peer-reviewed is correct (not the specific purpose of a peer-review), but something that can't pass ANY valid peer-review is highly suspect. While it's plausible that a biased reviewer exists somewhere in some journal, alleging all of these journals are corrupt is a rather dubious charge that tends to hurt the credibility of the accuser, especially when they end up publishing a study in an uncited demonstrably political journal of like-minded skeptics. Publishing in E&E helps give them the false appearance of a better level of credibility than their study deserves - seemingly better than just posting it on their website. If you're a stickler for ad hominens, Climate Audit is the last place one would want to go. The individual of that site spends more time slinging mud at reputable scientists (the ad hominens you're referring to) than doing actual objective research, and your link is evidence of that. Also, your link does not support your claim of reviewer bias, as is generally the case with McIntyre's ramblings. Good scientists need to be able to acknowledge errors and move on without constantly alleging corruption and conspiracy from those who dare challenge them. McIntyre consistenly fails to meet this criteria. If you say that scientists aren't supposed to be advocates, by this criteria, what contrarian scientists would still exist?
  40. It's the sun
    Re 372 - so you mean oxygen can indirectly cause cooling by affecting something else. Well of course, I have been aware that rising oxygen could lead to cooling by reducing the methane levels; however, I suspect this is a less significant effect once oxygen reaches some level of abundance and when methane's role becomes secondary to CO2 in climate-regulating greenhouse gases (except for short-term perturbations) - as far as I am aware, the O2 driven cooling by methane loss is thought to be potentially important in some Proterozoic ice ages, but I haven't heard anything about it being implicated in Phanerozoic ice ages. My impression has been that during the Phanerozoic, oxygen levels have not varied by an order of magnitude or more - instead reaching a peak of ~ 30 % or so some time in the Paleozoic (couldn't get much higher without forest fires consuming it), and it's now about 20 %, ...
  41. A broader view of sea level rise
    NewYorkJ, you are correct to think most researchers would prefer to publish in journals with a higher Impact Factor. I think I should explain why scientists sometimes choose to publish with E&E. Perhaps you have already heard the charge that skeptical papers are not well received by many journals. In most cases it has to do with the reviewers the editors chooses to review a paper. If you want, I can probably find advocacy quotes from editors of these other journals that would prove their motivation. It is a shame really, because scientists are not supposed to be advocates. I want to give you an example of what researchers are up against. Steve McIntyre, who has published in GRL and other journals, writes about a rejection notice he received from International Journal of Climate. http://www.climateaudit.org/?p=5978#comment-341365 Read Steve's comment and then a few comments following. You will begin to get a flavor of the kind of nonsense that goes on.
  42. A broader view of sea level rise
    Steve, I did read what Chris has written. I am not freaking out. I pointed out a few of the weaknesses with his argument. I hadn't the time then, or now, to deal with all of them. Your assessment that I have stepped back from my original position regarding Argo requiring a reconsideration of AGW theory is not correct. Loehle points out that there are reasons to question Argo data and I can accept that. But in my mind, the full accumulation of data is contrary to the claim AGW will be catastrophic. Argo is a very strong element of that but it is not alone. The assessment is also based on the climate sensitivity estimates by Schwartz and Chylek, Chylek's work on aerosols, Spencer's identification of a hew negative feedback over the tropics he identified as Lindzen's Infrared Iris Effect, and others. I have not found anything Chris has written as compelling. The only item you offer me is one I cited first and then Chris quoted back to me. It is one thing to be able to look up the numbers and another to be able to understand what they mean. A "pro-AGWer" is shorthand for a climate alarmist- one who strongly supports AGW theory. I would think the context would make that clear.
  43. A broader view of sea level rise
    NewYorkJ, your attack on the editor of E&E and Loehle's paper is completely ad hom. I'm sorry you do not understand that. In science, "credibility" is not a factor under consideration. The scientific method requires results to be reproduced. If results are reproducible, they are confirmed. If they are not, the paper is rejected. It is that simple.
  44. Volcanoes emit more CO2 than humans
    Re #219 Shouting insults isn't a substitute for careful and clear discourse Quietman. It's obvious that the articles that explore possible relationships between explosive volcanic eruptions and ENSO (see my post #218), indicate that it is the effect of eruptive aerosols on radiative forcing that can affect the ocean circulation in the subsequent short periods. If you've got references to scientific papers that indicates that geothermal heat from subduction zones influences ocean currents in the manner that you are asserting then why not simply list them here. And can you remind us what "That government site that posted a hypothesis for the volcanic nature for the root cause for ENSO" is? Which specific government site?
  45. It's the sun
    Dan Pangburn - I read your pdf (http://climaterealists.com/index.php?tid=145&linkbox=true) with some interest. I certainly agree with you that Feedback Control Theory is totally lacking in the field of Climatology. I remember reading an article by a leading Climatogist (a Ph.D and AGW sceptic) that had "discovered" that Feedback and Control theory was being taught in the building next to his....the faculty of Electrical Engineering. He briefly described a simple single feedback loop control system. He seemed amazed that this technology even existed. He certainly had no idea that feedback and control system concepts have commonly been used electronic circuit designs since the invention of the vacuum tube. I found this both amusing and sad.
  46. A broader view of sea level rise
    Ron, what are you doing? Read what Chris is writing -- he's saying that a small, significant amount of warming is expected from anthropogenic emissions between 70-160 yrs ago. True. Why are you freaking out? You seem to have stepped back from your original position regarding Argo falsifying AGW (is that assessment correct?) and now seem to be arguing other things less relevant to the thread. You've pointed out a few instances of things that don't impress you. What responses have you found compelling? Perhaps the first part of Chris' #23 re Loehle? I still haven't read that darned Church 2006 paper, but I suspect that the error estimates broaden out in the most recent years (John COOK's Fig 1 above) due to a 'smoothing' function or Bayesian approach in which subsequent estimates inform prior estimates. That, figures and discussion in "Mystery of Vanishing Ocean Heat", and the last part of NASA's story on Josh Willis suggest to me that grasping for the most recent data from a single data type is a bad strategy for increasing one's understanding. PS. What is a "pro-AGWer"? I for one would rather be considered as someone who tried to reduce AGW.
  47. A broader view of sea level rise
    "The rate of sea level rise has been increasing since the late 19th century. In an upcoming post, we shall look at predictions of future sea level rise." One very recent report, still in draft, projects a ceiling of 6 meters. The ACCE report states: "Rates of sea level rise at least twenty times the current 3.1 mm/yr sustained over more than a century have been measured for the transition to the current warm period following the termination of the last ice age and during some of the warmer intervals of the last ice age. Until improved predictive capability is achieved, this can be regarded as a reasonable upper bound of Antarctica's potential contribution to global sea level. This maximum rate (62 mm/yr) would lead to a 6-meter sea level rise by 2100, but such rates occurred when there was considerably more ice on the planet." http://www.antarctica.ac.uk/met/SCAR_ssg_ps/ACCE.htm I've seen others cap this at 2 meters, probably given the last line in the statement. Sea level rise has certainly been accelerating, but reaching 62 mm / yr seems very unlikely. Sorry for the double post above.
  48. Volcanoes emit more CO2 than humans
    I didn't make myself clear about the change in volcanic activity: I mean only subaerial emissions (not changes in the subduction regime on this short time scale), and usually only the effect of one or two major eruptions. Even then, I doubt that this is the only driver of ENSO. This is mainly because volcanic emissions can alter the weather patterns, and thus change winds, which in themselves influence ocean surface currents. The heat added to small spots on the sea floor is insignificant next to the power of the winds and the thermohaline currents. FYI there is no active subduction zone in the Arctic, only a divergent one (Gakkel Ridge). Not sure about the relevance of inactive ones. The active part of Alaska is to the south, where the north Pacific plate subducts, which is the cause of the Aleutians. The whole plate North America sits on is rotating counter-clockwise. This is a very large amount of facts you're getting wrong here. I'm not surprised anymore that you misunderstand all the references you've linked to.
  49. A broader view of sea level rise
    Ron Cram, My critique is of the journal, not the person. Since the journal is not cited and the editor has admitted to following a political agenda, it renders the journal's credibility rather weak and thus the study highly dubious. You don't seem to be addressing the problems with E&E, but instead appear to be dodging on misplaced ad hominen charges. Material in that journal is as good as self-published material. If an E&E study is all you have, there isn't much to discuss. I was hoping for more.
  50. It's the sun
    Patrick Re: "HOW does O2 cause cooling? Effects on the ozone layer? Interesting, but I need some numbers..." See: The rise of oxygen caused Earth's earliest ice age Thursday, May 7, 2009 "Geologists may have uncovered the answer to an age-old question - an ice-age-old question, that is. It appears that Earth's earliest ice ages may have been due to the rise of oxygen in Earth's atmosphere, which consumed atmospheric greenhouse gases and chilled the earth."

Prev  2579  2580  2581  2582  2583  2584  2585  2586  2587  2588  2589  2590  2591  2592  2593  2594  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2025 John Cook
Home | Translations | About Us | Privacy | Contact Us