Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  553  554  555  556  557  558  559  560  561  562  563  564  565  566  567  568  Next

Comments 28001 to 28050:

  1. One Planet Only Forever at 15:01 PM on 22 August 2015
    New paper shows that renewables can supply 100% of all energy (not just electricity)

    Rob Honeycutt@27,

    bozzza was probably referring to the old proposal to burn hydrogen in airliner engines. Of course the material problems, including hydrogen embrittlement of the fuel lines in a machine that shakes a lot, made that very unlikely to be economical, as is the current inefficient energy requirements for generating the hydrogen. Why would people choose to use that much energy for that purpose?

  2. New paper shows that renewables can supply 100% of all energy (not just electricity)

    denisaf @25...  Well, interestingly, both Boeing and Airbus are currently working on hydrogen fuel cell technology for aviation, with an eye on passenger aircraft.

  3. New paper shows that renewables can supply 100% of all energy (not just electricity)

    @ 19: why does Renewable Energy require any more of a global industrial infrastructure than nuclear or coal?

  4. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Some time ago I sent a post to Professor Jacobson listing a number of unsound technical items in their proposal in Scientific American of November 2009. Some of those issues are covered in the comments here.

    The suggestion that airliners could be powered by hydrogen was thrown out by reputable researchers over forty years ago but it is included in the proposal. another point is that 'renewable' systems (wind or solar) are made of irreplaceable materials so they can only be a tempoary source of a small amount of electricty. another point is that fossil fuels supply other products that WWS cannot supply.

  5. New paper shows that renewables can supply 100% of all energy (not just electricity)

    sunweb@19 said: "the sun and wind are renewable but the devices are not".  Why not?  Are they somehow used up in the producing of power?  People seem to think that once rare earth metals are mined for solar and wind devices that these materials are no longer available once the devices have outrun their useful life.  That's absurd.  On the contrary, there would be a potent financial reason to reclaim these 'already refined' rare materials during decommissioning, rather than dig up ore's and refine them all over again.

    If this is a new 'fossil-funded denial argument', its absurd on its face.  Wind turbine materials can be reclaimed in the same way gas turbine or steam turbine materials are reclaimed.

  6. New paper shows that renewables can supply 100% of all energy (not just electricity)

    @22 PhillippeChantreau

    The model does not include biomass because of the air pollution associated with burning biofuels. The aim of reducing air pollution appears to also be why they are using hydrogen production as a chemical store instead of a methanisation process.

    With regard to enhanced geothermal, currently EGS is falling out of favour because the rapidly decreasing cost of wind and solar is making those sources cheaper than EGS. The weakness of EGS in a large-scale,100% renewable scenario is that its basically a constant power source (similar to nuclear or coal-fired power in current systems). So it can't ramp-up to take advantage of the high-margin periods when generation from wind and solar is low. This reduces its cost-effectiveness.

  7. PhilippeChantreau at 07:02 AM on 22 August 2015
    New paper shows that renewables can supply 100% of all energy (not just electricity)

    I see no biomass in the Jacobson et al analysis, yet there is a potential there that should be ignored. Almost any material can be prepared to be used in a biomass burning furnace, including herbivores waste products. I also think that the share given to geothermal is pessimistic.

    Enhanced geothermal (EGS) should be given more attention. It has low impact, low risk, can function readily as baseload and is not nearly as expensive as nuclear. It looks so good on paper, one has to wonder why we're not pursuing more aggressively. According to the wiki entry, MIT has determined that the US alone has enough potential to power the entire world. It can also use CO2 instead of water, allowing for carbon sequestration. It does cause induced seismicity, but I don't think it's as bad as fracking. It's hard to see why it should represent such a small percentage in the mix as figures in the Jacobson graph.

  8. New paper shows that renewables can supply 100% of all energy (not just electricity)

    IANW01,

    Storage is not glossed over.  Jacobson uses concentrated solar power with storage for most of their storage.  Managemant of hydro power contributes a small amount.  The system is overbuilt so that all power demands are met 100% of the time. 

    Budischak et al. give specific data for the PJM interconnection (around Pennsylvania)  if you are interested in the Northern states.  Detailed studies have found that it is cheaper to overbuild renewables rather than build a lot of storage.  Budischak generated all their power internally, if they install interconnections to nearby grids they will require much less overbuild.  Budischak also did not use any hydro from Canada for backup on dark, windless nights.  They said using Hydro made it too easy to use 100% renewables.

  9. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Sunweb,

    Most other people disagree with you.  If the energy used to manufacture a solar panel comes from other solar panels than the new solar panel will be sustainable.  Current wind and solar generators are built using fossil power with a little renewable in it.  As more renewable power is built the fraction of power used becomes more and more renewable.  The paper described tells how we can build a system so that all power used is from sustainable sources.  Once they are installed, all economic activity will be done using sustainable power.

  10. New paper shows that renewables can supply 100% of all energy (not just electricity)

    I do not think solar or wind energy collecting devices are sustainable, green or renewable.  The reason is that they require a global industrial infrastructure for the manufacturing.  When they must be replaced they will require a similar infrastructure.  When I had to replace the pancake fan in my inverter, it had such a system behind it for manufacturing.  So the sun and wind are renewable but the devices are not.

  11. New paper shows that renewables can supply 100% of all energy (not just electricity)

    It isn't spam if it is the researched truth.  If I rephrase it but still suggest the videos with URLs is it spamming.  It is a challenge to the technofantasy that solar and  wind energy collecting devices are renewable, sustainable and green.  I find the same censoring when it doesn't fit the world view of the moderator.

    (snip)

    Moderator Response:

    [RH] Moderation complaints are also not allowed here. Please refer to the commenting policy.

  12. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Moderator - I don't think installing "renewables"  is sustainable or renewable.  They are extensions of the fossil fuel supply system.  

    (snip)

    All the human-made things in our world have an industrial history. Behind the computer, the T-shirt, the vacuum cleaner is an industrial infrastructure fired by energy (fossil fuels mainly). Each component of our car or refrigerator has an industrial history. Mainly unseen and out of mind, this global industrial infrastructure touches every aspect of our lives. It pervades our daily living from the articles it produces, to its effect on the economy and employment, as well as its effects on the environment.

    Solar and wind energy collecting devices also have an industrial history. It is important to understand the industrial infrastructure and the environmental results for the components of the solar energy collecting devices so we don’t designate them with false labels such as green, renewable or sustainable. This is an essay challenging ‘business as usual’. If we teach people that these solar devices are the future of energy without teaching the whole system, we mislead, misinform and create false hopes and beliefs.

    I have provided both charts and videos for the solar cells, modules, aluminum from ore, aluminum from recycling, aluminum extrusion, inverters, batteries and copper. Please note each piece of machinery you see in each of the videos has its own industrial interconnection and history. http://sunweber.blogspot.com/2015/04/solar-devices-industrial-infrastructure.html

    Moderator Response:

    [RH] Reposting a canned comment that was previously snipped for sloganeering is not acceptable.

    Please note that posting comments here at SkS is a privilege, not a right.  This privilege can be rescinded if the posting individual treats adherence to the Comments Policy as optional, rather than the mandatory condition of participating in this online forum.

    Please take the time to review the policy and ensure future comments are in full compliance with it.  Thanks for your understanding and compliance in this matter.

  13. New paper shows that renewables can supply 100% of all energy (not just electricity)

    keithpickering - I don't see anything in the Jacobson et al paper making claims against nuclear based on water usage - do you have a reference for that?

    The Decarbonization document seems interesting on a quick look, but I can't agree with some of their base numbers. They assume 2,500GW of renewables (wind/solar) to match 400GW of nuclear, a factor of 6X, whereas Archer 2007 demonstrated that a mere 19 distributed and interconnected wind plants could maintain a reliable baseload power of 33% their average (47% the yearly average), a factor of perhaps 3X, half of what they sate, simply because the same weather pattern wouldn't cover (and potentially nullify) all of the wind farms at once. 

    Archet et al also discussed techniques for reducing transmission costs by ~20%, with regional concentrators for the wind power and interconnecting to the larger grid from there. But the major impact IMO is in understanding baseload capabilities. 

  14. New paper shows that renewables can supply 100% of all energy (not just electricity)

    sunweb @12.

    It is a lot of wind turbines being discussed but they have to be judged against the alternatives. This erecting of 600-odd turbines a day would yield the same generation capacity as having to build every fourth day one very very large multi-steam-plant coal power-station. You may feel the 2,400 turbines in 4 days is a bigger ask than on giant coal power-station but perhaps you have less understanding of how big such power-stations actually are.

    As a comparison, the daily 600 turbines will contain something like 300,000 tons of material. That's 300,000 tons per day for 18 years.

    That's a lot of material but of the same order as the daily materials required to build a giant power-station every 4 days. This web page shows a relatively small power-station (40% the size I'm working to) using 900,000 tons of concrete & 56,000 tons of steel.

    And those 1,600 coal power-stations built over the 18 years would still need feeding with coal, a combined total of 55,000,000 tons of the stuff, day in, day out until they can be replaced by a better technology. So is it worth discussing this coal solution being green, sustainable or renewable? I think not.

  15. New paper shows that renewables can supply 100% of all energy (not just electricity)

    A very interesting, and dare I say, optimistic paper. However, while filled with lots of numbers, it seems to gloss over the storage and long distance transmission required during calm winter evenings in the northern states. And if this is the path forward it's time to buy stocks in copper and rare earth element producers.

  16. One Planet Only Forever at 02:43 AM on 22 August 2015
    World Bank rejects energy industry notion that coal can cure poverty

    PhillippeChantreau,

    I totally agree and would add that not long ago the World Bank would have been full of people that would help promote the interests of the likes of the coal barons any way they could get away with.

    Many changes for the better are happening.

    Even the current global correction of the markets (drops in stock market values) could be a good change if they are a reduction of unjustfied perceptions of value of activities (pursuits of profit) that are associated with or rely on the extraction and burning of fossil fuels (more than just coal).

  17. New paper shows that renewables can supply 100% of all energy (not just electricity)

    I really found this article interesting.

     

    Since wind turbines and solar panels use so many rare earth elements can we expect that future technologies will overcome the huge environmental impacts of mining them?  I know the mining of them in the US is prohibided.  From what I've also read, China may not be as forthcomming with them in the future.  

  18. New paper shows that renewables can supply 100% of all energy (not just electricity)

    One of the proposals of this ilk was by Jacobson. Jacobson’s first paper proposed: Starting in 2012 for 50% of the world’s energy we would need: 2111112 machines a year for 18 years which is over 578 machines a day for 18 years which is over 24 each hour, each day, 7 days a week for 18 years http://spectrum.ieee.org/energy/renewables/wind-water-and-solar-power-for-the-world/0 and http://www.scientificamerican.com/article.cfm?id=a-path-to-sustainable-energy-by-2030 In an email discussion with the second author he proposed that since we do it with cars; we can do it with “renewables”. So all the mining, processing, manufacturing, transporting, installing, two or three times a year maintenance. This is green? This is sustainable? This is renewable?

    Moderator Response:

    [RH] You seem to be making a very strange statement that installing renewables is not sustainable or renewable.

  19. New paper shows that renewables can supply 100% of all energy (not just electricity)

    All the human-made things in our world have an industrial history. Behind the computer, the T-shirt, the vacuum cleaner is an industrial infrastructure fired by energy (fossil fuels mainly). Each component of our car or refrigerator has an industrial history. Mainly unseen and out of mind, this global industrial infrastructure touches every aspect of our lives. It pervades our daily living from the articles it produces, to its effect on the economy and employment, as well as its effects on the environment. Solar and wind energy collecting devices also have an industrial history. It is important to understand the industrial infrastructure and the environmental results for the components of the solar energy collecting devices so we don’t designate them with false labels such as green, renewable or sustainable. This is an essay challenging ‘business as usual’. If we teach people that these solar devices are the future of energy without teaching the whole system, we mislead, misinform and create false hopes and beliefs. I have provided both charts and videos for the solar cells, modules, aluminum from ore, aluminum from recycling, aluminum extrusion, inverters, batteries and copper. Please note each piece of machinery you see in each of the videos has its own industrial interconnection and history. http://sunweber.blogspot.com/2015/04/solar-devices-industrial-infrastructure.html

    Moderator Response:

    [RH] I've deleted the contents of this comment because the exact same comment is copied and pasted repeatedly around the internet. This would constitute spamming. Please review the SkS commenting policies before posting again.

  20. PhilippeChantreau at 01:29 AM on 22 August 2015
    World Bank rejects energy industry notion that coal can cure poverty

    This is really making a short story long. Coal has not cured "energy poverty" in 200 years, ans there is no indication that the people who have got rich from coal in the past and are getting rich from coal now have any intention to significantly change their business model so that their focus will be on curing anmything. Not much else to say.

    Now, of course, whether or not "energy poverty" is something that can be "cured" is another debate entirely. The reality of the whole concept would have to assessed first. I lived once in a country blessed with both oil and uranium, and some of the people there could have been described as living in "energy poverty." I guess some of the more educated may even have used the word "energy clolonialism" but in a very different way than is mentioned in the OP...  

  21. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Certainaly "renewables" could power us but there is no way to get there from here without destroying the biosphere in the process. A shift of that magnatude would require massive fossil fuel burning, mining, processing, cement, and every other industrial process that is killing us and that would be in addition to all of the industrial processes that we now have happening continuing to function in order to not collapse the global economy.

    (snip)

    We are at a point in human evolution where every solution to a problem creates an even bigger problem that we will need to solve for later.

    So what do we do? LESS!!!!!!

    Moderator Response:

    [RH] Sloganeering snipped. If you're going to make such extreme statements you're going to have to back them with some actual data and figures.

  22. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Nuclear is nowhere close to 33-40% efficiency .... In fact it's not even double digits

    Only 5% of the potential energy in a nuclear fuel rod is used while the other 95% goes to waste making Nuclear Waste waste on more than one level. Then you add the inefficiencies in the mining process, inefficiencies in the refining process, ineffeciencies in the steam boiler and finally the inefficiencies of the turbine generator itself you'd be lucky to hit a 1% efficiency when PROPERLY CALCULATED 

  23. New paper shows that renewables can supply 100% of all energy (not just electricity)

    keithpickering, actually from my reading they say that nuclear was excluded because of cost factors and construction time. I didn't see anything about water use of nuclear power... let alone that this was the reason for excluding it.

  24. keithpickering at 16:27 PM on 21 August 2015
    New paper shows that renewables can supply 100% of all energy (not just electricity)

    As usual, Jacobson et al. miss the boat by excluding nuclear power from their analyses on the thinnest of excuses. (Water use is the excuse, even though hydropower uses vastly more water than nuclear yet somehow manages to make the cut. In other words, Jacobsen et al. are playing politics instead of science.) 

    Meanwhile, the Deep Decarbonization Pathways Project found that the high-renewables scenario, similar to the plan Jacobson et al. favor, would cost about four times more than the cheapest pathway, which happens to be the high-nuclear pathway. (That's strongly dependent on the future price of fossil fuels, but taking the median in each case.)

    It will be interesting to see how the upcoming paper on grid revamping will turn out. The most recent HVDC line in North America, the West Alberta line (opened last March) cost $6 million per mile for a 1 GW line, and that's through relatively unpopulated country where rights-of-way are cheap. At that price, it's cheaper to build a nuclear plant next door that it is to transmit wind power 700 miles.

  25. New paper shows that renewables can supply 100% of all energy (not just electricity)

    @ villabolo .  re efficiency improvements. Note in the graph that there is a planned reduction in energy consumed of about 33% from todays levels (2.4 TW down to 1.59 TW), or more than 1TW from predicted business as usual levels (in 2050). Most of that saving is from switching to electricity, but some from efficiency improvements.

  26. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Knaugle,

    Jacobson et al. "do the math" in their paper.  As described in the second pargraph of the OP, approximately 1.6% of land area would have wind generators widely spread out.  Farming or other land uses would take place between the generators (the actual land footprint of the turbines is small).  If you put the generators in the most efficient places it would take less generators but that is not quantitated (it would also cost less).   You could put more wind generators at sea and reduce the onshore wind even more if that is desirable (offshore is more expensive but the wind is more consistant).  

    Your quote of 25% capacity for wind is too low.  Your argument is inconsistent since you used the maximum output for nuclear and the minimum for wind.  You need to use comparable estimates for both if you want to make a fair evaluation.

  27. New paper shows that renewables can supply 100% of all energy (not just electricity)

    @ scaddenp #3.

    Yes, I should have thought of my answer more carefully. My goal, however, would be for an 80% reduction in fossil fuel energy use within the next 20 years (I know, I'm dreaming).

  28. New paper shows that renewables can supply 100% of all energy (not just electricity)

    That 16% needs to be seen in context of what proportion of total energy consumption is in residential home use. In NZ, it is about 10% of energy use though I expect it to be higher in places with more heating/cooling needs and/or less transport costs.

  29. New paper shows that renewables can supply 100% of all energy (not just electricity)

    I'm assuming that this paper assumes current electrical uses projected into the future. However there are off grid communities in existence that consume 16% of the electricity normally used in the general area.

    This ecovillage has all the anemities and appliances of a middle class house with homes that are conventional looking (no "earthships"). 10 inch super insulated walls, led lighting, underground heating and cooling tubes and passive solar design make this dramatic reduction possible.

    With such a massive reduction in electrical and energy usage we'll only need one sixth of our current energy usage for homes. 50 mpg hybrid cars will take care of the rest.

  30. New paper shows that renewables can supply 100% of all energy (not just electricity)

    Still if you do the math, it takes about 1800 Wind turbines rated at 2.5 MWe (capacity factor about 25%) to replace a single 1100 MWe baseload plant (capacity factor >90%).  That's a lot of land coverage.  That means there are still some significant practical hurdles to get to where this paper suggests.  It is not entirely a political problem.  Solar, hydro-electric and others all have their issues as well.

  31. Christopher Gyles at 03:14 AM on 21 August 2015
    Corrected sunspot history suggests climate change not due to natural solar trends
    Is this as significant a correction as it appears to my inexpert understanding?
  32. Corrected sunspot history suggests climate change not due to natural solar trends

    Interesting topic. I read their study a few weeks ago.

    You might call it "The Making of Sunspots 2" but they called it..

    "Revisiting the Sunspot Number"
    Frédéric Clette, Leif Svalgaard, José M. Vaquero, Edward W. Cliver

    arxiv.org/abs/1407.3231 with downloadable .pdf

  33. Corrected sunspot history suggests climate change not due to natural solar trends

    Since this revision affects the solar input parameters to most climate models, there will need to also be some rework of those?   This is good science.    One can expect it to be misinterpreted in the usual places :-)

  34. 2015 global temperatures are right in line with climate model predictions

    Sou, dont forget our friend John Kehr, aka TheInconvenientSkeptic, probably ASOFAI-fan, who thinks Milankovitch forcings somehow beat all other numbers.

  35. Miriam O'Brien (Sou) at 12:11 PM on 19 August 2015
    2015 global temperatures are right in line with climate model predictions

    Like Jos, a couple of years ago I put together some unusual and "couldn't be more wrong" alarmist predictions from deniers:

    http://blog.hotwhopper.com/2013/07/denier-weirdness-collection-of-alarmist.html

    While within the model envelope, I think that in a strong El Nino year, the surface temperature would be expected to rise above the line. As I understand it, the reason it doesn't is because the forcing estimates were on the low side (eg volcanic aerosols), as well as the PDO being in its cold phase till recently. The next few years will tell more of the story.

  36. 2015 SkS Weekly Digest #33

    "El Niño Could Rank Among Strongest on Record"
    Soon to be heard.. "Warming stopped in 2015" Sigh.

  37. 2015 SkS Weekly Digest #33

    Coming Soon section was not updated.  Looking forward to another great week of stuff!  Thanks and keep up the good work.

    Moderator Response:

    [JH] We are working to correct this section.

  38. Earth Overshoot Day

    There is one physical property of CO2 that is not talked about and that is its weight.

    It weights more that air and sinks in air that's why 3 ski patrollers died at Mammoth,CA and in Yellowstone animals are killed there because the CO2 is heavier that air.

    In fact, nature O2/CO2 cycle is built around this property. The green leaves, at ground level (where CO2 sinks to), take in CO2 and produce O2. Think of it differently_____NO CO2-------NO O2!

    I'm not saying we are not the cause, but I think in another way.

    Carbon is the cause, yes. Fine particles of carbon can float in air. That is the cause of many a coal mine explosion. So CO2 sinks in air but C can float in air if the particle size is right.

    And what would produce CO2 in the upper atmosphere? Since CO2 can not float up to there!

    Highly reactive ozone O3 (produced by UV from the sun) and carbon particles, C+O3 = CO2+O, and then the CO2 sinks down. They also say there is an ozone depletion problem allowing more UV in!

    John S Goldner

    Moderator Response:

    [PS] Offtopic. Please immediately familiarize yourself with the  Comments Policy. Conformance is not optional. Ensure future comments are in full compliance with it.  Thanks for your understanding and compliance in this matter.

    And you might want to familiarize yourself with the science and observations of gas distributions in the atmosphere once a gas has been become mixed.

  39. Earth Overshoot Day

    The real Debt and Deficit Disaster.

  40. The Rap Guide to Climate Chaos

    Thanks GWS, I've not seen that before....

  41. 2015 SkS Weekly News Roundup #33

    Sunday August 9 link to Torngat glacier story is missing, should be

    Torngat Mountains glaciers shrinking faster, says researcher

    Moderator Response:

    [JH] Glitch fixed. Thank you for bringing it to our attention.

  42. The Rap Guide to Climate Chaos

    maybe this one is better?

    Denial Tango

  43. Earth Overshoot Day

    Joel_Huberman @4, I made no analysis of the 'sustainable level' of CO2 in the atmosphere.  That is because, given sufficient time adapt, any level of CO2 under 1000-2000 ppmv is 'sustainable'; while any level above 280 ppmv will require some adaption.  Consequently the idea of a sustainable level of CO2 is not particularly coherent.  However, if we are going to use the concept, 310 ppmv is a level that will require minimum adaption by either nature or humanity and can reasonably be claimed to be sustainable.  However, for policy purposes, a peak level of 450 ppmv (+/- 100 ppmv) represents the consensus value for a CO2 level to which human society could reasonably adapt and and live with on a sustained basis.  At least, that is how I understand the IPCC position.

    More importantly for my argument @2 above, the assumed emission levels are those at which CO2 concentrations will fall over time (due to further take up of CO2 by the ocean, and ocean buffering by erosion) so that if we reduced emissions to about 5% of current global emissions now (immediately) emissions would fall over the medium term and stabilize in the low 300's of ppmv.  We would not further need to enhance that rate of natural fall by sequestration and geoengineering (although it might still be desirable to do so).  (Note that ocean buffering will also restore ocean pH levels, but only over a time line of a thousand years or so.)

    If, as is certain, we increase CO2 levels above the current 400 ppmv, we will also need to reduce the sustained emissions to allow for the natural reduction in CO2 level to bring us to a sustainable long term atmospheric concentration.  If we continue increasing atmospheric concentration until 2050 (virtually certain), the sustainable level drops down to zero emissions; and beyond that we will need active geosequestration.  But if all nations had per capita emissions equivalent to those on the list above, global warming would be a problem that would solve itself with some minor ecological and economic adaption.  Ergo, that level, or thereabouts, represents the current sustainable level of emissions.

    That the sustainable level of emissions will fall due to the activities of other nations is not the fault of the nations currently emitting at levels that are currently sustainable.

  44. Earth Overshoot Day

    Tom Curtis @ 2. Thanks for your interesting response. I wasn't thinking about emissions per country, but global emissions, and I was thinking about the fact that atmospheric CO2 is currently about 400 ppm, way above sustainable levels of 350 ppm (according to Hansen and 350.org) or 310 ppm (according to your analysis). Thus the Earth as a whole is already way over budget. Consequently, even Mali could contribute to bringing the Earth back to a reasonable carbon budget by reducing its miniscule CO2 emissions even further.

  45. The Rap Guide to Climate Chaos

    Not really my "cup of tea' musically, but the sentiments therin are on track I think.

  46. Earth Overshoot Day

     Interesting.

     Quantitative argument is where it's at and the politicians can only defend bias in the speakers chair for so long until the pertinent figures reveal themselves to the majority of voters and action is voted for!!

  47. One Planet Only Forever at 04:48 AM on 15 August 2015
    The 1C Milestone

    Rob Honeycutt@17, Changing what has to monetarily be evaluated in the marketplace will only partially address the problem. It is more important that the only actions allowed to be prioritized by profitability and popularity are actions that are almost certain to be truly sustainable. That also means curtailing any actions that are potentially harmful no matter how popular they may be among some people, leading that group to try to ensure the activity remains chap and profitable rather than admit the unacceptability of ways of living they got away with developing.

    Another thing that trying to price the impacts would fail to value or assign cosy to is the price that should be paid for any consumption of nonrenewable resources. How much it costs to extract and consume these limited resources should include a massive price no matter how abundant the resource appears to be.

    Even putting a price on consuming a nonrenewable may not properly limit pursuits of profit. The failure of the marketplace to properly value helium has led to the nonrenewable source being wasted on party balloons rather than be reserved for life saving medical use. And adding to the cost does not ensure that only the most deserving consumption would occur.

  48. Antarctica is gaining ice

    bozzza @428.

    Do note that ice shelves and sea ice are not the same thing. (And also this thread is properly about ice sheets which is something else again entirely.)

    bozzza @429.

    While it is possible to consider fitting an upward curve to the graph @426 in place of the linear trend, the cause of the increases in Antarctic SIA/SIE would be worth looking at first.

    Like the loss of ice from Antarctica, the increase of Antarctic SIA/SIE is the product of two competing trends. Parts of the ocean are increasingly icy but other parts are losing ice. Also a lot less is known prior to the arrival of good satellite data in 1979. Fan et al (2014) suggests that ice may have been on an earlier downward trend, shrinking markedly up to 1979, strains perhaps of long-term natural variation at work? While other, for instance recently Hansen et al (2015), see large levels of sea ice growth in Antarctica as a by-product of AGW, and perhaps a by-product we should be very worried about.

    So, while fitting anything is possible, a reasoned fitment would be preferable to one that simply suits the mood of the author. In that regard, the linear trend provides a simple gauge of the situation, nothing more.

  49. Earth Overshoot Day

    Joel_Huberman @1, absent all anthropogenic emissions, the total CO2 content in the atmosphere would decline to about 310 ppmv over about 200 years.  The total forcing for 310 ppmv is about 0.55 W/m^2, with an expected equilibrium temperature response of about 0.42 C above preindustrial levels.  That is, the equilibrium temperatures will be equivalent to those in the 1960s, and can reasonably be supposed to be "safe" - indeed, may even be beneficial relative to pre-industrial levels.  Ergo, over the life time of any reasonable policy projection, restricting emissions to approximately 5% of current levels could be considered sustainable.  That being the case, the following nations can reasonably be supposed to never exceed their sustainable emissions levels (the numbers being their ranking in world per capita emissions):

    178. Bangladesh
    179. Cambodia
    180. Cameroon
    181. IvoryCoast
    182. Kenya
    183. Kiribati
    184. Laos
    185. Burma
    186. Sudan
    187. Comoros
    188. Gambia
    189. Guinea-Bissau
    190. Haiti
    191. Liberia
    192. SierraLeone
    193. Timor-Leste
    194. Togo
    195. Zambia
    196. BurkinaFaso
    197. CentralAfricanRepublic
    198. Eritrea
    199. Ethiopia
    200. Guinea
    201. Madagascar
    202. Malawi
    203. Mozambique
    204. Nepal
    205. Niger
    206. Rwanda
    207. Somalia
    208. Uganda
    209. Tanzania
    210. Afghanistan
    211. Burundi
    212. Chad
    213. DemocraticRepublicoftheCongo
    214. Mali

    So, granted that the world's worst emitter exceeds its sustainable emissions in less than two days, and the world average exceeds sustainable emissions before the end of January, I do not think it is fair to say that all nations begin the year with a deficit.

     

  50. The 1C Milestone

    OPOF @16... Actually, I believe that overconsumption is a different problem. Our core problem is that our main source of energy puts massive amounts of CO2 into the air. While the over exploitation of other resources is an important challenge, it pales in comparison.

    I would submit that the solution to both of these issues is to get the externalities of energy generation priced into the marketplace. If we can do that for energy, then doing the same later for resource depletion should be a piece of cake.

Prev  553  554  555  556  557  558  559  560  561  562  563  564  565  566  567  568  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us