Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.


Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Twitter Facebook YouTube Pinterest MeWe

RSS Posts RSS Comments Email Subscribe

Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...

New? Register here
Forgot your password?

Latest Posts


Is Nuclear Energy the Answer?

Posted on 13 June 2019 by scaddenp

Abbott 2011  and Abbott 2012 doesn’t think so but perhaps there are better analyses? For discussions of economics, levelized cost estimates of various electricity technologies can be found here and here.

Nuclear energy is quite commonly proposed as the solution to reducing GHG emissions. As soon as this gets raised on an article's comment thread, there has been a bad tendency for on-topic discussion to be completely derailed by proponents for and against.

We have repeatedly asked for nuclear proponents to provide an article for this site which puts the case based on published science but so far we haven't had a taker. The proposal would need to be reviewed by Sks volunteers. In lieu of such an article, this topic has been created where such discussions can take place.

However, in the absence of a proper article summarizing the science, stricter than normal moderation will be applied to ensure that all assertions made for or against are backed by references to published studies, preferably in peer-reviewed journals.

Update - October 2020

This post has been up for a little over a year now, and has received over 200 comments. Now seems like a good time to add some clarification.

First of all, the challenge to "nuclear proponents" to provide an article requires that the article "summarize the science". It is not the desire of Skeptical Science to provide a one-sided, pro-nuclear assertion. The expectation is that an article would provide a balanced review of all aspects of nuclear energy as a practical, affordable, realistic source of low-carbon energy.

If you think of yourself as a "nuclear advocate", then writing a balanced article will be difficult for you. This is not a place for "lawyers' science", where the role is to pick a side and pretend there is no other reasonable argument. This is not about winning an argument - it is about coming to a common understanding based on all the available evidence.

If you think that criticism of your position represents an "anti-nuclear bias", then writing a balanced article will be difficult for you.

If you think that you are the only one that truly understands nuclear energy, then you are probably wrong.

Review of any submitted article will not be at the level of a review of a professional journal article, but anyone submitting an article needs to be prepared to have their positions examined in detail for weaknesses, missing information, lack of support in the peer-reviewed literature, etc. If you find it tough to accept criticism in the comments thread, then you will not find review any gentler.

0 0

Printable Version  |  Link to this page


Prev  1  2  3  4  5  6  7  

Comments 301 to 319 out of 319:

  1. 'You keep posing conspiracy theories about governments sabotaging nuclear.'

    Hardly conspiracy theories. Governors Brown in California and Cuomo in New York, Prime Minister Naoto Kan in Japan, and Presidents Tsai Ing-wen of Taiwan and Moon Jae-in of South Korea, made no secret of their determination to close their respective nuclear industries. In Europe, Green parties have been demanding the energy portfolio in return for joining coalitions, and then closing reactors even when it means funding new gas plants or resurrecting coal.

    0 0
  2. Macquigg:

    I went to comment on your "more neutral forum" and I have been blocked. I only posted there once and did not violate the site rules.

    The moderators here allow nuclear posters. So much for your "neutral" forum.

    0 0
  3. Both renewables and nuclear decarbonize.

    Fell, H., Gilbert, A., Jenkins, J. D., & Mildenberger, M. (2022). Nuclear power and renewable energy are both associated with national decarbonization. Nature Energy, 7(1), 25-29. [Link]

    ...which is a response to flawed analysis found here:

    Sovacool, B. K., Schmid, P., Stirling, A., Walter, G., & MacKerron, G. (2020). Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nature Energy, 5(11), 928-935. [Link]

    Nuclear is low carbon, on par with wind and solar, right?

    0 0
  4. Sekwisniewski:

    Analysis of lifecycle emissions of nuclear power compared to renewables by scientists generally indicate that nuclear plants emit 5-10 times as much carbon dioxide as renewables.  Nuclear industry sources find emissions are comparable.  Who do you believe?.

    Jacobson 2009 reviews the data at that time.   Since 2009 renewables have reduced their emissions while nuclear has not changed.  In addition, Jacobson calculates emissions due to opportunity cost.  

    It takes about 2-4 years to plan and build wind and solar plants.  It takes about 10-14 years to plan and build a nuclear plant.  For the entire time you are building the nuclear plant you have to use fossil fuels.  You save much more carbon by building the rapidly completed renewable energy plants.

    Since 2009 the cost of renewables has plummeted.  Nuclear costs have risen.  Nuclear reduces carbon much slower and at much greater cost.  For me that is not "on par" with wind and solar.   Some people do not care about time and cost and feel nuclear is comparable.

    0 0
  5. "Who do you believe?" - wow, so much science! What is going here, folks? Is this some kind of bait for trolls? This thread does not look like a serious effort to summarize knowledge on nuclear, so I don't think anyone will respond.

    0 0
    Moderator Response:

    [PS] As stated in the article, the primary purpose of this thread is to keep nuclear discussions away from other threads for people who want to talk about it. No one on the SksSc team has any particular expertise in the science of nuclear power though some frequent commentators here are well versed.

    SksSc would welcome guest contributions that are willing to focus on peer-reviewed papers. We would especially welcome any peer-reviewed rebuttals of Abbott. We are not particularly interested in the opinions of self-proclaimed experts that are not willing to back their assertions with reviewed references.

    Other sites are definitely a better place to discuss the economics, safety and politics of nuclear power.

  6. This 2021 paper refutes the conclusions of Sovacool et al. I don't believe the authors have any connection to the nuclear industry.

    CO2 emissions of nuclear power and renewable energies:
    a statistical analysis of European and global data

    'Our results are in complete contradiction to a recent publication (Sovacool et al. in Nat Energy 5:928–935,2020. The authors of this paper conclude that nuclear power does not reduce the CO2 emissions, but renewable power efficiently does. In addition, they argue that these two technologies crowd out each other. The possible reason for their claims may result from a specific conditioning of the data. In contrast, our analysis clearly confirms the adequacy of both nuclear and renewable power generation.'

    0 0
  7. John ONeill @306,

    You do your reputation no favours when you say of Wagner (2021) 'CO2 emissions of nuclear power and renewable energies: a statistical analysis of European and global data' that you "don't believe the authors have any connection to the nuclear industry." You appear not to even have noted that there was but one author. And had you checked you would find Frederick Wagner was an emeritus professor of Plasma Physics, so deeply connected to the technology, and that his commentary (eg here) shows his connections also to the industry. But that doesn't make his paper unreliable although it is good to read such work before nailing its colours to your own masthead, even if as in this case the battle is against a pretty easy target, which Sovacool et al (2020) certainly is. Maybe you have not noted that presented @303 is another swip at Sovacool et al., namely Fell et al (2020) 'Nuclear power and renewable energy are both associated with national decarbonization'.

    0 0
  8. John Oneil:

    In your post at 392 you claimed:

    "'Over the last 50 years, countries that adopted nuclear power consistently reduced emissions intensity, by more than three times as much as those that went without nuclear."'

    Your link was apparently not peer reviewed.  Your most recent links suggest similar reductions between nuclear and renewables.  My cite found renewables resulted in less emissions.  As I said at 296, I doubt we will agree on his topic since different papers reach different conclusions.

     Your citations only address emissions during the running of nuclear plants, the opportunity cost emissions of nuclear are about 10 times the total emissions of wind and solar due to the very long build times of nuclear.  They are calculated in Jacobson 2009, linked above at 304, and are the main reason Jacobson rejects nuclear as a future power source.  In addition, since it takes 10-14 years on average to build a single nuclear plant we would see no nuclear power from proposed plants before 2035.  That is after all electricity should be converted to low catbon.  2035 is too late.

    Nuclear is too expensive, takes too long to build and there is not enough uranium.

    0 0
  9. The mention of "opportunity costs" ties into what I suspected may be leading to the differences in estimates/opinions here.

    "Opportunity cost" is a common term in economics, and may need a little explaining. Let's say that I have $1000 sitting in a bank account, making 3% interest. One point of view is "hey, that's great! In a year, I'll have $1030! What a good investment!" But if a different investment vehicle will turn that $1000 into $1050 in a year, then I am actually losing out on $20 of lost income - $20 of money that could have been mine next year if I had switched investments. Although I think I am making $30 in the year, I have lost the opportunity to make another $20 - the "opportunity cost" of my current choice of investment.

    What Michael Sweet is saying is that the "cost" of nuclear needs to include the lost opportunity of reducing carbon emissions while we wait for nuclear to be built. The carbon emissions in the next 30 years will be either 30 years of wind built today, or 10 years of fossil fuels plus 20 years of nuclear if we say "but direct emissions from nuclear are as good or better than wind".

    Going back to the $1000 investment, are we further ahead if we invest at 3% for 30 years, or nothing for 10 years and 5% for 20 years? You need to include the opportunity cost of "nothing for 10 years" to make an accurate comparison.

    It's kind of like Popeye's friend Wimpy: "I'll gladly pay you next Tuesday for a hamburger today".

    0 0
  10. A few problems with the opportunity emissions of nuclear:

    1. if they are added to lifecycle emissions, they'd need to be subtracted from fossil emisions,
    2. nuclear may be built to replace aging nuclear (repowering),
    3. nuclear coming online in the future may cover new demand arising from clean electrification,
    4. any other source should have opportunity emissions added too.
    0 0
  11. A few problems with that list, sekwisniewski.

    1. It doesn't matter whether you label them as "nuclear' or "fossil". The emissions end up in the atmosphere.
    2. If nuclear is being built to replace existing nuclear, then it doesn't replace fossil-fuel-based capacity and does nothing to reduce fossil fuel emissions.
    3. Other sources coming on line now can also cover future demand.
    4. Yes. The calculations need to cover all sources of electricity, and all the CO2 emissions that are produced if a particular path is chosen. Cherry picking a compartmentalized view - where you only count emissions when a plant is operating (e.g., wind vs. nuclear) and you ignore how this fits into the overall picture - is a bad approach.
    0 0
  12. Replying to 311:

    1. You can't add opportunity emissions to lifecycle emissions, because it violates the conservation of mass, if those lifecycle emissions are then used to calculate physical emissions. 

    2. Another counterfactual to maintaining nuclear is replacing it with a mix of fossil and renewable sources. Fossil backup of renewables is suggested in Abbott (2012). Renewables replacing nuclear wouldn't reduce emissions either according to your logic, which does not seem to be a good framing.

    3. Yes, but when nuclear covers new demand opportunity emissions of = 0.

    4. Absolutely, we've got to take the overall picture into account, which is studied in the field of energy systems modeling.

    0 0
  13. Seriously, sekwisniewski? "Conservation of mass" arguments?

    Taking life-cycle emissions, using only what happens during construction and operation of the plant violates the "conservation of a consistent argument" requirement when looking at item 4. Either we are taking the entire system and results into account, or we are selecting only the part that supports a particular argument (AKA cherry picking).

    0 0
  14. Replying to 313:

    Of course, by definition the lifecycle emissions should account only for a given source (wind, solar, nuclear, hydro, etc) LIFECYCLE. Once we've established those, we could construct various scenarios of building those sources in time in an interacting system. Only then could we optimize and assess if there are "opportunity emissions" for different scenarios, i.e. does including nuclear bring us faster/cheaper to net zero or not? Still, these wouldn't be lifecycle emissions. Does this make sense?

    0 0
  15. sekwisniewski:

    I already said:

    It doesn't matter whether you label them as "nuclear' or "fossil". The emissions end up in the atmosphere.

    What matters is complete accounting. Item 4, which I think we agree on.

    "Getting faster to net zero" is not necessarily the issue. Minimizing total emissions between now and "getting to net zero" is what matters.

    0 0
  16. Replying to 315:

    Bob Loblaw:

    "Getting faster to net zero" is not necessarily the issue. Minimizing total emissions between now and "getting to net zero" is what matters.

    I did not intend to suggest otherwise and used "faster/cheaper" quantifiers as possible scenario constraints.

    0 0
  17. The difference between getting to net zero first versus minimizing the total emissions between now and reaching net zero is not a trivial distinction.

    Look at the following figure. The red line reaches zero after 40 years. The blue line has not quite reached zero after 60 years. The total emissions under the red line are about 3x the total under the blue line. Waiting 30 years for "better technology" is not a good choice.

    Getting to net zero

    0 0
  18. The graph with the concave blue line and the convex red line is actually a good cartoon of what actually happened to the electricity emissions of France and Germany, the exemplars of the 'Mesmer plan' accelerated reactor buildout, and the 'Energiewende' attempt to decarbonise with mainly wind and solar. French electricity emissions, and fossil fuel use, plummeted, and are still among the lowest in Europe, even though at the moment, the nuclear industry is only running at 34% of its capacity. Germany started later, its emissions have gone down much more slowly, it's still producing on average 3 to 4 times as much CO2 as France, and there's no guarantee that the reduction curve will get steeper - at the moment, it's not looking good, with mothballed coal plants being started up to replace the Russian gas that's supposed to be 'firming' solar and wind. Peak power production over the last 24 hrs was 69 GW, close to the full capacity of either solar, 65 GW, or wind, 64 GW. But solar averaged only about 11 GW, and wind only 14 GW. German nuclear, unlike French, has been running at 98% capacity all day. The batteries that will supposedly back variable renewables are nowhere to be seen. Pumped hydro makes an appearance for just four hours, at from 2 to 11% of demand. Meanwhile, the 'brown coal', of which Gemany is the world's largest user, continues to be the largest single source of electricity, as it has been for the last thirty

    0 0
  19. John Oneill:

    ...and if we had an expectation that the conditions that led to early development of nuclear in places such as France could occur again, and provide us with large quantities of nuclear energy in the very near future at reasonable/competitive cost, then nuclear would be a useful path in the future.

    But like they say in any investment advice, "past performance is not indicative of future results". You really need to make sure that the conditions that led to past performance will actually exist and continue in the future.

    0 0

Prev  1  2  3  4  5  6  7  

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.

The Consensus Project Website


(free to republish)

© Copyright 2023 John Cook
Home | Translations | About Us | Privacy | Contact Us