Enter a term in the search box to find its definition.
Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).
Home Arguments Software Resources Comments The Consensus Project Translations About Support | |||||
Latest Posts
|
Archived RebuttalThis is the archived Intermediate rebuttal to the climate myth "It's not us". Click here to view the latest rebuttal. What the science says...
In science, there's only one thing better than empirical measurements made in the real world - and that is multiple independent measurements all pointing to the same result. There are many lines of empirical evidence that all detect the human fingerprint in global warming: The human fingerprint in atmospheric carbon dioxideThat rising carbon dioxide is caused by human CO2 emissions should be obvious when comparing CO2 levels to CO2 emissions:
Confirmation that rising carbon dioxide levels are due to human activity comes from analysing the types of carbon found in the air. Carbon has three key isotopes: carbon 12, making up 98.97% of all carbon on Earth, has 6 neutrons in its atomic nucleus, carbon 13 has 7 and carbon 14 has 8. Plants have a lower C13/C12 ratio (written d13C) than the atmosphere due to a degree of isotopic fractionation during photosynthesis. That isotopic fingerprint passes from dead plant-debris into the geological record as coal, oil and gas deposits. If rising atmospheric CO2 comes from fossil fuels, then d13CO2 should be becoming more and more negative as that isotopic fingerprint is released into the atmosphere in ever-increasing amounts. Indeed this is precisely what is occurring (Ghosh & Brand 2003) and the slope of the trend correlates with the trend in global emissions, almost like a mirror image.
Further confirmation comes by measuring oxygen levels in the atmosphere. When fossil fuels are burned, the carbon in the fossil fuels are joined to oxygen, creating carbon dioxide. As CO2 increases in the atmosphere, oxygen decreases. Observations show oxygen levels are falling at a rate consistent with the burning of fossil fuels.
The human fingerprint in the increased greenhouse effectSatellites measure infrared radiation as it escapes out to space. A comparison between satellite data from 1970 to 1996 found that less energy is escaping to space at the wavelengths that greenhouse gases absorb energy (Harries et al. 2001). Thus the paper found "direct experimental evidence for a significant increase in the Earth's greenhouse effect". This result has been confirmed by more recent data from several different satellites (Griggs & Harries 2004, Chen et al. 2007).
That less heat is escaping out to space is confirmed by surface measurements that find more infrared radiation returning to earth. Several studies have found this is due to an increased greenhouse effect (Philipona et al. 2004, Wang & Liang 2009). An analysis of high resolution spectral data allows scientists to quantitatively attribute the increase in downward radiation to each of several greenhouse gases (Evans 2006). The results lead the authors to conclude that "this experimental data should effectively end the argument by skeptics that no experimental evidence exists for the connection between greenhouse gas increases in the atmosphere and global warming."
The human fingerprint in temperature trendsAnother human fingerprint can be found by looking at temperature trends in the different layers of the atmosphere. Climate models predict that more carbon dioxide should cause warming in the troposphere but cooling in the stratosphere. This is because the increased "blanketing" effect in the troposphere holds in more heat, allowing less to reach the stratosphere. This is in contrast to the expected effect if global warming was caused by the sun which would cause warming both in the troposphere and stratosphere. What we observe from both satellites and weather balloons is a cooling stratosphere and warming troposphere, consistent with carbon dioxide warming (Karl, 2006; Santer et al., 2013)
If an increased greenhouse effect was causing warming, we would expect nights to warm faster than days. This is because the greenhouse effect operates day and night. Conversely, if global warming was caused by the sun, we would expect the warming trend to be greatest in daytime temperatures. What we observe is a decrease in cold nights greater than the decrease in cold days, and an increase in warm nights greater than the increase in warm days (Alexander et al. 2006, Fan 2010). This is consistent with greenhouse warming.
Note: The paragraph below figure 1 was updated on July 2, 2023 by John Mason. Updated on 2015-07-11 by MichaelK. |
THE ESCALATOR |
|||
© Copyright 2024 John Cook | |||||
Home | Translations | About Us | Privacy | Contact Us |