At a glance - Explaining how the water vapor greenhouse effect works
Posted on 1 August 2023 by John Mason, BaerbelW
On February 14, 2023 we announced our Rebuttal Update Project. This included an ask for feedback about the added "At a glance" section in the updated basic rebuttal versions. This weekly blog post series highlights this new section of one of the updated basic rebuttal versions and serves as a "bump" for our ask. This week features "Explaining how the water vapor greenhouse effect works". More will follow in the upcoming weeks. Please follow the Further Reading link at the bottom to read the full rebuttal and to join the discussion in the comment thread there.
At a glance
If you hang a load of wet washing on the line on a warm, sunny day and come back later, you can expect it to be dryer. What has happened? The water has changed its form from a liquid to a gas. It has left your jeans and T-shirts for the air surrounding them. The term for this gas is water vapour.
Water vapour is a common if minor part of the atmosphere. Unlike CO2 though, the amount varies an awful lot from one part of the globe to another and through time. Let's introduce two related terms here: 'non-condensable' and 'condensable'. They set out a critical difference between the two greenhouse gases, CO2 and water vapour.
Carbon dioxide boils at -78.5o C, thankfully an uncommon temperature on Earth. That means it's always present in the air as a gas. Water is in comparison multitalented: it can exist as vapour, liquid and solid. Condensed liquid water forms the tiny droplets that make up clouds at low and mid-levels. At height, where it is colder, the place of liquid droplets is taken by tiny ice-crystals. If either droplets or crystals clump together enough, then rain, snow or hail fall back to the surface. This process is constantly going on all around the planet all of the time. That's because, unlike CO2, water vapour is condensable.
CO2 is non-condensable and that means its concentration is remarkably similar throughout the atmosphere. It has a regular seasonal wobble thanks to photosynthetic plants - and it has an upward slope caused by our emissions, but it doesn't take part in weather as such.
Although water vapour is a greenhouse gas, its influence on temperature varies all the time, because it's always coming and going. That's why deserts get very hot by day thanks to the Sun's heat with a bit of help from the greenhouse effect but can go sub-zero at night. Deserts are dry places, so the water vapour contribution to the greenhouse effect is minimal. Because clear nights are common in dry desert areas, the ground can radiate heat freely to the atmosphere and cool quickly after dark.
On the other hand, the warming oceans are a colossal source of water vapour. You may have heard the term, 'atmospheric river' on the news. Moist air blows in off the ocean like a high altitude conveyor-belt, meets the land and rises over the hills. It's colder at height so the air cools as it rises.
Now for the important bit: for every degree Celsius increase in air temperature, that air can carry another 7% of water vapour. This arrangement works both ways so if air is cooled it sheds moisture as rain. Atmospheric rivers make the news when such moisture-conveyors remain in place for long enough to dump flooding rainfalls. The floods spread down river systems, causing variable havoc on their way back into the sea.
Atmospheric rivers are a good if damaging illustration of how quickly water is cycled in and out of our atmosphere. Carbon dioxide on the other hand just stays up there, inhibiting the flow of heat energy from Earth's surface to space. The more CO2, the stronger that effect.
Please use this form to provide feedback about this new "At a glance" section. Read a more technical version below or dig deeper via the tabs above
Click for Further details
In case you'd like to explore more of our recently updated rebuttals, here are the links to all of them:
Comments