Recent Comments
Prev 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Next
Comments 101601 to 101650:
-
Stephen Baines at 10:54 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
The question HR is why does he clearly hold one view when talking to Dessler and another when blogging to the public. The point that Dessler is making in the emails is that if ENSO is initiated by ocean-atmosphere interactions, and if this leads to cloud formation that reinforce that change, then that is a feedback. It is the magnitude of that very feedback that Dessler is trying to measure. When confronted with that reasoning in the emails, Spencer argues that the clouds initiate ENSO by affecting surface temp so as to avoid admitting that clouds are acting as feedbacks. In the quote you provide above from his site, he seems to be talking about clouds as a feedback mechanism, which essentially means Dessler is correct in his approach. He seems to realize (and take advantage of)the fact that he is talking to an audience who is not aware of the important distinction between clouds as initiators and clouds as feedback mechanism, and therefore who won't realize that he is backing into a corner. -
HumanityRules at 10:52 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
To put it simply I think Dessler thinks A) ENSO causes temperature change which causes cloud changes which cause further temperature changes. A classic feedback situation While Spencer is proposing some role for B) ENSO causes circulation changes which cause cloud changes which causes temperature changes. Unforced internal variability I'm not sure Spencer is proposing the first one does not exist just that what is showing up in the data set is a mixture of both. It's this that makes Desslers (and others) methodologies different from Spencer's. Anyway I'll post this on Spencer's blog to see what he has to say. -
HumanityRules at 10:39 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
91 NewYorkJ 93 dhogaza You could also try this on Spencer's blog I'll even copy the relevent bit for you "To Dessler’s credit, he actually references our paper. But he then immediately discounts our interpretation of the satellite data. Why? Because, as he claims, (1) most of the climate variability during the satellite period of record (2000 to 2010) was due to El Nino and La Nina (which is largely true), and (2) no researcher has ever claimed that El Nino or La Nina are caused by clouds. This simple, blanket claim was then intended to negate all of the evidence we published. But this is not what we were claiming, nor is it a necessary condition for our interpretation to be correct. El Nino and La Nina represent a temporary change in the way the coupled atmospheric-ocean circulation system operates. And any change in the atmospheric circulation can cause a change in cloud cover, which can in turn cause a change in ocean temperatures. We even showed this behavior for the major La Nina cooling event of 2007-08 in our paper! It doesn’t mean that “clouds cause El Nino”, as Dessler suggests we are claiming, which would be too simplistic and misleading of a statement. Clouds are complicated beasts, and climate researchers ignore that complexity at their peril." These are Spencer's words, not Dessler's interpretation of Spencer's words. It can't be any clearer that he does not hold the view that Dessler assigns him. I understand what Spencer is saying here and I'm not a climate scientist. He's not arguing clouds cause ENSO, he's questioning the assumptions about the relationship between clouds and temperature. In Spencer's first email he says clouds proceed temperature, not clouds proceed ENSO. It's Dessler that seems to think that this means ENSO is caused by clouds. My reading of Spencer's work is to try to understand what he calls "internal radiative forcing" and other's call "unforced internal variability". This isn't just his theory, what's novel about Spencer's work seems to be in the understanding of how these processes affect the measurement of short term radiative forcing. While Spencer goes off on a flight of fancy about the timing of the publication, and should really hold his head in shame over that, I do think he has a point about Dessler's use of the "clouds cause ENSO" arguement. The power of that arguement is to place Spencer so far outside the mainstream as to discredit everything he says. It's no more worthy a tactic than Spencer's conspiracy theory and no better at discrediting the science. -
Tom Curtis at 10:01 AM on 16 December 2010Stratospheric Cooling and Tropospheric Warming
Ebel @243, the majority of emmissions near the 15 micron band comes from CO2 in the troposphere, from about an altitude of 8 - 10 km. If you use the Modtran model linked to several times in this thread, with a look down altitude of 10 km, you will see the main part of the emmission spectrum still present (as in fig 2 above). You will not see the spike at the center, of course, because it comes from the stratosphere and hence from above 10km. If you use Modtran, and a 10km look up altitude, you will see the spike, but not the main band. Clearly, though, the spike, being an increase of outgoing energy, must be an emmission rather than an absorption. -
Riccardo at 09:59 AM on 16 December 2010It's albedo
Rovinpiper not sure I understood your mate's question. If referred to Kirchoff law, it is valid at each wavelength and need not be integrated. Integration, instead, is performed when computing the radiative balance. -
Daniel Bailey at 08:46 AM on 16 December 2010It's the sun
Re: TheCaz (748) Short answer? In the paleo record, CO2 acted as a feedback to temperatures, with orbital factors being a primary driver of climate change (with the exception of methane burps [think PETM]). What is different today is the immense bolus, or carbon slug, of CO2 mankind has injected into the atmosphere. By doing so, we have changed the game: instead of CO2 acting as a feedback, it now acts as forcing, causing a cascade feedback reaction of warming that also drives more CO2 and CH4 release, causing further warming. The warming will continue until CO2/CH4 emissions stablize + about 40 years for the thermal lag of the oceans to catch up. Once radiative balance is then achieved, temps and resulting large and micro-scale climate patterns will stabilize. And that was the short answer. The Yooper -
TheCaz at 08:12 AM on 16 December 2010It's the sun
The figure (and referenced data) show a de-coupling of solar output from Earth's surface temperatures, starting in the mid 1970s. The conclusion is that there must be another causative agent that overwhelms solar influences, starting around that time (greenhouse gases). But the data's weakness is that the prior correlation only goes back a few hundred years. If the data was traced back a few thousand years, then would it show any other periods of uncoupling? Or is the recent uncoupling unique in the holocene? -
Ebel at 07:40 AM on 16 December 2010Stratospheric Cooling and Tropospheric Warming
The radiation of the entire 15μm bands at 220K is from the stratosphere, which has over the entire thickness almost 220K (yellow line). The small spike in the middle is caused by a particularly strong absorption, so that the emission comes almost exclusively from the height of the ozone area. See also # 234th -
dhogaza at 07:36 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
Yes, it's very clear. Over at RC Dessler made it clear that it was this e-mail exchange that convinced him that Spencer really *is* arguing that clouds are driving ENSO. He speaks specifically of satellite data showing causation in a recent La Niña, and that it's clouds=>temperature. -
Stephen Baines at 07:33 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
hfranzen I spoke about the seasonal variation and terrestrial carbon storage because you were trying to understand seasonal variation in CO2 as a function of ocean CO2 uptake, which is the wrong path to take. The reason there are large positive and negative fluxes of CO2 into the ocean is because some regions are net sources and some regions are net sinks of CO2. Those arrows indicate the sum release for the net source areas (like the equatorial Pacific), and the sum of uptake in the net uptake areas (like the subantarctic regions north of the Southern Ocean). As you can tell these areas are large. The minimal scale is essentially set by the minimum cell or pixel size of dynamic models of ocean physics and satellite observations (usually >kms) -- the in and out numbers do not refer to both gross flux terms of the net flux at one point...that would be pointless for the reasons you point out. Scientists study the spatial variability in PCO2 flux because efflux and influx can be decoupled by things like ENSO (on the short term) and ventillation (on the long term). It allows you to explicitly address the ability of the ocean to store CO2 in the future under different climate/oceanographic conditions and different time scales of exposure to increased CO2. We are discussing some of this on the acidicfication page as pointed out my muoncounter above. I think it's good science. You also have to include those arrows because they are in every global C cycle produced over the last few decades. As a consequence, you can't ignore them because cynics will say your hiding something when you're not. Ackowledging those arrows and explaining why they don't negate the importance of athropogenic CO2 is important. As for the time and mass units they are years and Gt CO2 (not C). If you go back to the original IPCC figure you can figure that out. In fact, the IPCC report covers all of what I said above pretty well. I'd read it. -
Joe Blog at 07:28 AM on 16 December 2010The 2nd law of thermodynamics and the greenhouse effect
damorbel at 00:00 AM Ned has already said it, but i realize on reading what i wrote how it may be interpreted, the lapse rate, may be due to density/gravitational compression(which also effects path length), but the energy contained is due to energy in vrs path length out. As can be seen in the graphic in NEDs post. The stratosphere is an entirely different kettle o fish, it absorbs UV through O3, and is optically thick for UV, but is relatively transparent to LW, so CO2 cools it, But UV heats it from the top down, there is a thread on it here at the moment. In which there has been a bit o a discussion about the relevance of radiation to the lapse rate and convection. -
scaddenp at 07:16 AM on 16 December 2010The 2nd law of thermodynamics and the greenhouse effect
Also, for what happens to the upper level photons, the graphic at jg's (meant for explaining stratospheric cooling) is useful. And dont forget DLR is measured, something damorel struggles to explain. -
Eric (skeptic) at 07:04 AM on 16 December 2010It's albedo
Here's a link to that paper /news.php?n=481&p=2#34079 -
Eric (skeptic) at 06:57 AM on 16 December 2010It's albedo
#19, I recommend Climate modeling through radiative-convective models (Ramanathan 1978) equation 16 (absorption and scattering of solar radiation) which integrates over wave number, angle of incidence, etc. -
Ned at 06:57 AM on 16 December 2010It's albedo
Hi, Rovinpiper. Sorry to have missed your first question: What is "s" in your equation for energy emitted? It should be a "sigma" ... it's the Stefan-Bolzmann constant. Since it's constant, the equation tells us that emitted energy at a given wavelength is a function of just the object's temperature and its emissivity (fraction) at that wavelength. [...] he states that we must integrate over the whole spectrum. Must integrate over the whole spectrum to do what? What's he "skeptical" about? The spectral distribution of incoming solar radiation is very different than the spectral distribution of outgoing longwave radiation. The former is almost entirely at short wavelengths (probably > 99% of it is below 3 micrometers) , while the latter is almost entirely long wavelengths (definitely > 99% of it longer than 3 micrometers). The latter is why the Earth doesn't glow in visible light (lava flows and forest fires excepted...). So you don't really need to integrate across the entire spectrum (or integrate anything, really) to answer the questions you were talking about earlier in this thread. Changing the visible-wavelength albedo of an object will change how much it absorbs, without necessarily implying a corresponding change in the efficiency with which it emits longwave radiation. In that case, the object will warm up or cool down until it reaches a new equilibrium. Dunno if this helps at all. -
Stephen Baines at 06:33 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
Yep...Spencer is definitely saying clouds are initiating ENSO in that exchange. The mechanistic sequence is not really explained though. Nature paper there if he can convince anyone... -
hfranzen at 06:23 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
I think I understand the basic science quite well and am familiar with the details of the Keeloing curve. I am certain without knowing the details that I can visualize what is hapeening at the ocean-atmosphere interface. One of my current interests is to try to bridge the severe communication problem between scientists and nonscientists. I have at every opportunity made myself available to speak or write about the aspects of this probelm that I think I understand well. As part of this effort I turned to the Skeptical Scientist for guidance and the first thing I came upon was this thread and the figure (7.3) from the IPCC that seems to me to undercut the effort. In this figure a cycle involving 300+ GT of CO2 to and from the ocean is "given" - nothing to indicate the time span (although one could surmise a year) but more importantly nothing to indicate distance. The arrows in the figure suggest vary large distances but in what sense does one know (or feel qualified to suggest) that 300+ GT of CO2 move from point A to point B on the earth? My point is that the quoted 300+ GT of carbon (or CO2 - not even that is clear)are meaningless and these numbers only serve to confuse an already confused situation. If you are inclined to respond please know that I know how much CO2 humans are producing, how much of it is going into the atmosphere, how much CO2 (and bicarbonate and cardonate) are dissoled in the ocean, I understand heterogeous equilibria, and etc. I just want to know why figure 7.3 was the first response of many possible to the original query, and would like to have people acknowledg or refute my assertion that the figure is bad science and therefore bad communication. -
NewYorkJ at 06:19 AM on 16 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
HR, This should be obvious in their exchange: http://geotest.tamu.edu/userfiles/216/emailExchange.pdf http://www.realclimate.org/index.php/archives/2010/12/feedback-on-cloud-feedback/ -
Stephen Baines at 06:07 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
Here is link to an image of the CO2 flying carpet showing spatial and temporal variability combined. -
Rovinpiper at 06:03 AM on 16 December 2010It's albedo
I am facing that most intractable of global warming deniers, the old physicist. Faced with what we just discussed about Kirchoff's Law he states that we must integrate over the whole spectrum. How do you do that? -
Stephen Baines at 05:57 AM on 16 December 2010Ocean acidification isn't serious
Glad someone has the patience and time to post those images! "So anyone who says 'atmospheric CO2 increase is solely due to ocean outgassing' is all wet." On that we should be able to agree. Physical and chemical considerations as well the evidence from stable isotopes, physical measurements, times series of pH and pCO2 pattern/trends are in agreement and unequivocal. -
Stephen Baines at 05:46 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
Hfranzen "but in what way is a dynamic exchange of CO2 a cycle?" As noted, there is a lot more spatial variability implicit in that image than can be presented effectively. Also a cycle as used in earth science also implies transitions between different states (inorganic/organic, aqueous/gaseous) that can occur in a single space. That's just the usage. -
muoncounter at 05:35 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
#87: "in what way is a dynamic exchange of CO2 a cycle?" To use a familiar illustration, here is a 'dynamic exchange' of CO2 in/out of the biosphere. The result is a regular 6-7 ppm peak to trough cycle each year. It is superimposed on the long-term increase of ~2ppm per year due to anthropogenic CO2. The annual peak is in April, at the start of the growing season in the northern hemisphere; the annual trough is in September-October, aka 'fall'. -
Stephen Baines at 05:27 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
Hfranzen Most of that annual cycle has to do with seasonal cycles in carbon stored in terrestrial organic matter as biomass that builds up in spring and is later decomposed. For this reaons the annual cycle gets progressively less obvious as one moves from northern latitudes (with large proportion of surface area as land mass), to southern latitudes (where most of the surface area is covered by ocean). Biomass can accumulate on land because plants are more complex and there is a lag between formation and decomposition of organic matter (those processes also show lagged seasonal cycles). Plants in the ocean are largely single cells and get quickly eaten or decomposed. So even though there is almost as much photosynthesis in the ocean as on land, it is impossible to store much carbon in biomass in the ocean. Therefore, net CO2 flux into the ocean on the short time scale tends to be driven by abiotic factors (pCO2 in water and air, water temp, wind, currents, upwelling/downwelling). As for how these numbers are measured, I think that is covered in the IPCC AR4. In both terrestrial and oceanic systems there are areas than act as sinks and sources. We know the ocean is a net sink because it is acidifying as CO2 invades (in fact, becasue of that you can say that we actually know the net flux there better than the gross fluxes back and forth!) We also have calculated maps of CO2 flux based on physical/ biological controls that are consistent with a net influx under current conditions. Those are pretty good, but are improving all the time. Land use and biomass inventories suggest that overall the land is a net source due to deforestation - but regional reforestation has meant that some areas have been CO2 sinks over the last century. Uncertainty on the inventories is large but getting better - an active area of research. There are also biophysical models of primary production and decomposition that are driven by satellite data and physiological constraints. These are groundtruthed against long term plots used in the inventory studies. One can cross check both land and oceanic net flux estimates against changes in pCO2 as air masses pass over water bodies and land as constrained by known physical constrains on exchange. That can be done on the small scale (eddy diffusivity measurements in forest or grassland plots) or the very large scale (over Amazonia or the Southern Ocean) using so called inversion techniques which infer exchange rates -- essentially a complex regression whose fit is constrained by physical considerations. So basically on the budget side the focus has been on measuring net exchange in many ways rather than following individual molecules or plumes of CO2 (although that is interesting in and of itself). You can infer how far a typical molecule of CO2 travels in the atmosphere, but that turns out to be a consequence of the measurements and does not affect them. Hope that helps... -
muoncounter at 05:19 AM on 16 December 2010Ocean acidification isn't serious
Lovenduski's Fig 4 captures in time series format the changes going on south of 35S latitude. For 'natural flux', the trend turned from - (sink) to + (source) in the mid 80s; a warming sign? But when she adds in 'anthropogenic' to create the 'net flux', the long term trend is driven downwards towards a stronger sink. Hence this patch of southern ocean is, on balance, soaking up CO2 and acidifying. But the picture changes in other parts of the world: --from Lamont Doherty --from NOAA PMEL So anyone who says 'atmospheric CO2 increase is solely due to ocean outgassing' is all wet. -
hfranzen at 05:18 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
Many thanks,I am fully aware of the point of your second paragraph -I have developed a power point discusing the CO2 atmospheric balance and detailiong the physical chemistry of its effect upon the earth. Does anyone want a copy? As regards your first paragraph, that may be the way they are thinking, but in what way is a dynamic exchange of CO2 a cycle? If I take a bottle of soda water in and out of the refrigerator and think about doing it a rediculously huge number of times am I then justied in calling what I envision a carbon cycle and putting 300+ GT arrows in my drawing of the soda bottle? I.e. a dynamic exchange of that charater may justifiably be considered a microcycle but it has no relavance to the type of macrocycle one thinks of when one considers, for example, the water cycle during which water is moved thousands of kilomters in periods of weeks. My major point is that a cycle means movement and to discuss movement in terms of quantity alone is, in this case for sure, meaningless. What is needed is quantity a distance and a time and the figure gives only a quantity. It is very poor communication at best and very poor science at worst. -
Stephen Baines at 04:22 AM on 16 December 2010Ocean acidification isn't serious
As for whether clouds are trickier than oceanic CO2 exchange, you'd have to say the Luvenduski paper does an outstanding job of reproducing the mesocale SST variability across the Southern Ocean (fig 2). I have pretty good confidence in their prediction of the underlying physical variables that largely constrain CO2 flux. Clouds are WAY more difficult, I think. -
Stephen Baines at 04:08 AM on 16 December 2010Ocean acidification isn't serious
Muoncounter - "How is it possible for oceans to simultaneously absorb and emit CO2?" Actually a simple source of confusion may be the separation of natural and anthropogenic CO2 that is made the Luvenduski paper. It helps to know that net flux of CO2 into the ocean really reflects the balance between CO2 influx and outflux, just like temperature of the ocean reflects a net energy balance. So there can be a net flux of anthropogenic CO2 in (as all of it is in the atmosphere), but a net total flux of CO2 out due to local imbalances between pCO2 in water and air. It can be hard to parse that out in words without being confusing, as that text you quote makes quite clea! But fig 3 does a good job. The complex pattern of "natural" CO2 influx and outflux (Fig 3b)reflects upwelling of CO2 rich water, temp changes, downwelling (well constrained) as well as sea surface exhange and phytoplankton growth/sinking (both less well constrained) on the CO2 balance. The contemporary pattern differs in that influx of CO2 has increased regionwide due to anthorpogenic CO2. The spatial pattern of that increase is shown in Fig3c. That's the shift toward sink state I mentioned. One big unknown in all of this is if the biological pump in this region may respond to changing CO2 in this region. People are working on various aspects of that as we speak. -
Michael T. at 04:03 AM on 16 December 2010A new resource - high rez climate graphics
This NOAA graph of CO2 and global temperature should be used more often when communicating to the public.Moderator Response: [Daniel Bailey] Link here: http://www1.ncdc.noaa.gov/pub/data/cmb/images/indicators/global-temp-and-co2-1880-2009.gif -
muoncounter at 03:00 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
#82: "how do I reconcile several hundred GT changes in the atmosphere with the ca. 5 GT annual change of the Keeling curve?" I may be oversimplifying it a bit, but I visualize the '~330 Gt up/down' as being an equilibrium cycle. Even if we released zero anthropogenic CO2, that cycle would still be there. Add in the CO2 we release from fossil fuel consumption -- on the order of 30 Gtons annually in recent years -- and you get the annual change in average atmospheric CO2 concentration (+1.5-2.5 ppm by volume). It is not difficult to work out how this excess mass of CO2 in Gtons converts to +2ppm by volume in the atmosphere, as long as approximately 50% of this mass is taken from the atmosphere by land/ocean sinks. You can actually trace the increasing rate of atmospheric CO2 concentration from increasing annual CO2 emissions; data are available here. -
muoncounter at 02:41 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
#83: "the sign of this flux is spatially and temporally heterogeneous." Is it ever. We're trying to decipher some of this at Ocean acidification. -
indulis at 02:14 AM on 16 December 2010A new resource - high rez climate graphics
Or (thanks to Wolframalpha.com) ~~ 5.6 × 2003 estimated energy in world's total fossil fuel reserves (~~ 3.9×10^22 J ) -
indulis at 02:10 AM on 16 December 2010A new resource - high rez climate graphics
I think it'd be good to put chart 2 into units people understand for more visceral impact. A couple of options. Based on my calculations, the energy gain of the earth has been the equivalent of detonating 52 Million x 1 Megaton atomic bombs. That is 100 x 1 Megaton atomic bombs every hour, for the last 60 years. Another way of looking at it is that over 60 years, the planet has been warmed by the energy equivalent of 62x of the output all of the world's power plants (2010 power plants), operating for 60 years. DOE says total worldwide electricity generation in 2010 was 16,385 Billion Kwh. My calculations: 1 joule 0.0002778 watt hours 1.00E+21 joules 2.78E+17 watt hours 2.20E+23 Joules total earth energy gain 6.11E+16 KWh 60 years 525600 hours 1892160000 seconds 1.16E+11 kW net gain (assuming linear over 60 years) 1.6358E+13 Annual electrical energy production Kwh (per DOE) 1,867,351,598 Electrical power generation worldwide KW (average) 62.27 Energy gain of planet vs current electricity production 1 Megaton atomic bomb 4.184E+15 Joules 5.26E+07 Atomic bombs energy equivalent 1.00E+02 Atomic bombs every hour over 60 years -
Paul D at 01:49 AM on 16 December 2010A new resource - high rez climate graphics
I think Inkscape might convert pdf to SVG?? It's a free open source drawing package. -
hfranzen at 01:43 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
Thanks for the answer (and rest assured I am definitly on the side of the IPCC. But,how far does the CO2 have to travel from source to sink to be inclded? Clearly CO2 is entering and leaving the ocean everywhere at all times, but to get a number to put on the quantity one has to define the transport as being between two points. How does one decide upon the two points? It seems to me that that decsision would be totally arbitrary i.e. one could get any number up to some meaningless maximum for which the CO2 travels only a millimeter or a micron. What am I missing here? -
indulis at 01:14 AM on 16 December 2010It hasn't warmed since 1998
A really nice temp chart is here at NASA Earth Observatory -
The 2nd law of thermodynamics and the greenhouse effect
damorbel - By George, I think you've got it! Even if you don't recognize it. The surface of the Earth (e) radiates greenhouse gas IR bands proportionally to T(e)^4. If there were no greenhouse gases, that would go straight to space (s), which has a temperature of ~3K. Instead, we have an atmosphere (a) with greenhouse gases, which emits IR at those wavelengths proportionally to T(a)^4. Summing radiative energy transfer in those bands (as per your post): - No GHG's -> (T(e)^4 - T(s)^4), T(s) = 3K - GHG's -> (T(e)^4 - T(a)^4), T(a) = 287K Note that 287K >> 3K, and that in the GHG case much less energy leaves the surface of the Earth in those bands - lowering emissivity. The effective emissivity (proportion of energy emitted versus a black body) of the Earth has dropped, and to radiate the same incoming solar energy with a lower emissivity the temperature will go up. -
Ned at 00:54 AM on 16 December 2010The 2nd law of thermodynamics and the greenhouse effect
There is no logical connection between this paragraph: This would be fine if the temperature in the troposphere was a function of the radiation but it isn't. DT/dz in the troposphere is about the same over the poles as it is over the equator, this temperature gradient is called the lapse rate and it has nothing to do with radiation. and the preceding paragraph, to which it is presumably intended as a response. Nobody said that the lapse rate is determined by radiation. That is a complete red herring (something that should be no surprise to readers of this thread, or the preceding one). Raising altitude of emission (due to GHGs), and keeping the lapse rate constant (not due to GHGs), implies warming of the surface. If you're unwilling to listen to people here, and you're unwilling to read Science of Doom, and you're unwilling to look at a textbook or talk to an expert, there's probably nothing I can do that would help. But for others who might be interested, there's a very good explanation of the underlying physics of the greenhouse effect over at Chris Colose's blog. Here's a simple graphic from Chris's post, explaining how raising the height of emission while keeping the lapse rate constant (the slope of the diagonal line in this figure) implies a warming of the surface: The Y axis is altitude, the X axis is temperature. Since the temperature at the new height of emission has to increase, the constant lapse rate means that all temperatures at lower altitudes must increase, too. Here's Chris's summary:So…review: Because of energy balance, the planet must get rid to space as much energy as it receives from the sun. Averaged over the Earth, taking into account the albedo and geometry, this is about 240 W m-2. In the absence of an atmosphere, this flux of radiation is lost by the surface by \sigma T^{4}_{s}. With an atmosphere, this flux of radiation is allowed to emanate from upper, colder layers of the atmosphere, say on average at some altitude H. Increasing greenhouse gases increases the altitude of H, a height in the atmosphere which depends on wavelength, and characterizes a level of mean emission to space. Because the atmosphere is now emitting from colder levels of the atmosphere, the OLR has decreased, and the result is that the planet must warm to re-establish radiative equilibrium.
I have no expectation that damorbel will learn anything from this, but others might find Chris's discussion useful. I highly recommend his blog, though he only posts very sporadically. -
Ned at 00:14 AM on 16 December 2010Human CO2 is a tiny % of CO2 emissions
hfranzen writes: Furthermore if the time is for one year, how do I reconcile several hundred GT changes in the atmosphere with the ca. 5 GT annual change of the Keeling curve? Re: the ocean/atmosphere CO2 exchange, the sign of this flux is spatially and temporally heterogeneous. In one area and one season, the ocean will be a CO2 sink, while at some other place and time it will be a source. Integrating over the globe and the seasons gives a total upward flux of 332 Gt, and a downward flux of 338 Gt. This doesn't show up as a huge swing in the Keeling curve because the two processes are occurring simultaneously and thus mostly but not entirely cancel each other out. At least that's my understanding. -
damorbel at 00:00 AM on 16 December 2010The 2nd law of thermodynamics and the greenhouse effect
Re #239 you wrote:- "its the altitude at which energy can effectively escape however, that is responsible for the T gradient, which is necessary for the transport of energy to this altitude... " How can this be when the temperature rises steadily in the stratosphere? So the lower atmosphere is already largely opaque to some wavelengths, but the path length shortens with altitude, so by adding more opaque molecules, it raises the height that radiation can effectively escape, so its necessary for this new altitude, to heat enough that it is emitting the incoming, and next layer down must heat enough that it is able to transport this energy up to this height, etc etc.. This would be fine if the temperature in the troposphere was a function of the radiation but it isn't. DT/dz in the troposphere is about the same over the poles as it is over the equator, this temperature gradient is called the lapse rate and it has nothing to do with radiation. -
damorbel at 23:48 PM on 15 December 2010The 2nd law of thermodynamics and the greenhouse effect
Re #245 SteveS you wrote:- "I've seen this statement a number of times and it makes no sense to me. If the GHGs absorb the downward radiation, they would still have to re-emit some of it again, some of which would again be downward. Only if there were a layer of GHGs next to the surface that somehow magically didn't re-emit any radiation downward could this mean that none of the downward radiation reached the surface." The layer just above the surface has about the same temperature as the surface so, with a very small temperture difference there is almost no radiative energy transport. By far the greatest transporter of energy from the surface to the atmosphere is the evaporation/condensation cycle of water (rainfall!) Don't forget that radiative transport is proportional to (T1^4 - T2^4) where T1 is the surface temperature and T2 is the destination temperature; whereas evaporative transport works for the order of a few degrees. BTW, when calculating radiative transport, where is the destination, so that its temperature can be known - the troposphere is very thick and has a very variable temperature? -
CBDunkerson at 23:38 PM on 15 December 2010The 2nd law of thermodynamics and the greenhouse effect
damorbel writes: "But don't GHGs also absorb the downward radiation? Surely they absorb the downward radiation from the upper atmosphere long before it gets to the ground" As SteveS has pointed out, this is pure nonsense. Let's say the atmosphere was 100% greenhouse gases. In such a circumstance every photon of IR in the impacted wavelengths would be absorbed immediately after leaving the ground. It would then be re-emitted... possibly back down to the ground or possibly upwards... where it would immediately be absorbed by another molecule of greenhouse gas and then re-emitted... possibly back down to the previous 'just above the surface' molecule and from there either up again or back down to the surface. Continue ad infinitum. With less than 100% atmospheric greenhouse gases the process works the same way except that most photons travel past several molecules of other types (e.g. Nitrogen) before being absorbed by another greenhouse gas molecule. Yes, the further up a photon gets the less likely it is for that energy to eventually be transmitted back to the ground... but we are talking about ridiculously large quantities of energy. Even 0.00000000001% is a tremendous amount of heat. The question also ignores everything below the "upper atmosphere"... as if photons magically teleported from the surface to the upper atmosphere without having to pass through all the space in between - with its much higher probabilities of the energy being 'bounced' back down to the surface. Also: "...few seem to recognise that, if the outgoing radiation exceeds the incoming, then the temperature cannot rise." If outgoing radiation exceeds incoming then we've violated the law of conservation of energy. -
Eric (skeptic) at 22:28 PM on 15 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
Albatross (#83), I was incorrect in #80 (answering your #77). I read the paper body (p. 1525) and forgot about the caption where Dessler only plotted ECMWF, not MERRA. When I looked them up originally I found the MERRA tech report which explained assimilation very nicely so I used that. I need to find a similar reference for ECMWF. Both "reanalyses" (i.e. models with data assimilation) are used in the same way for his conclusion (the models with real world data matches the models without). My argument is that the cloud parameters are internal (at least in MERRA) and therefore depend on the radiation, convection and cloud process equations plus an assortment of parameters which are determined by fitting the model to the real world data. I think my argument will apply to ECMWF, but I will have to look that up to find out their model details, particularly for clouds. Sorry about the confusion (starting with my #16). Obviously I need to look at Spencer next. I am pretty sure that you are correct that his model is too simple and that his model assumptions are what creates his result independently of the real world measurements. I'll also try to evaluate how he states and tests his hypothesis. Dessler was quite clear about his. -
Rob Painting at 22:27 PM on 15 December 2010Ocean acidification isn't serious
Muoncounter - How is it possible for oceans to simultaneously absorb and emit CO2? The temperature of the ocean is heterogeneous too. Generally the flux of CO2 to the atmosphere originates from the tropical regions where the ocean is warmer and CO2 less soluble. The uptake is occurring in the larger region of cooler waters where CO2 is more soluble. Much more complicated than that of course, as others have already pointed out, but why over-complicate matters?. The overall effect of human fossil fuel combustion is to increase CO2 dissolved into the oceans at a rate that is unprecedented. Papers are practically screaming that the oceans are sucking up CO2 to what will become dangerous levels (at least to plankton) in not very many years. From McNeil and Matear 2008 The Arctic Ocean is projected to reach aragonite (more soluble form of calcium carbonate) undersaturation within a decade, meaning the waters will be corrosive to calcifying marine organisms that make their shells from aragonite. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model "Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm." It amazes me how little attention is being given to such a serious issue. It will have profound effects for life on Earth, and the changes to ocean chemistry are pretty much irreversible for many ten of thousands of years. -
SteveS at 22:09 PM on 15 December 2010The 2nd law of thermodynamics and the greenhouse effect
"But don't GHGs also absorb the downward radiation? Surely they absorb the downward radiation from the upper atmosphere long before it gets to the ground" I've seen this statement a number of times and it makes no sense to me. If the GHGs absorb the downward radiation, they would still have to re-emit some of it again, some of which would again be downward. Only if there were a layer of GHGs next to the surface that somehow magically didn't re-emit any radiation downward could this mean that none of the downward radiation reached the surface. Imagine if things worked the way you think they do, then wouldn't the same be true for the radiation going upward? All of the reflected radiation would be absorbed within a few mean free paths of the surface and never make it to the TOA, let alone into space. The layer next to the surface would become extremely hot since all the reflected IR never leaves that layer. -
damorbel at 20:14 PM on 15 December 2010The 2nd law of thermodynamics and the greenhouse effect
Re #238 KR - The temperature of any object,... ..(physical changes), etc. Agreed. - Under the conservation of energy... ...equilibrium is reached when incoming = outgoing again. Agreed - Outgoing energy in a vacuum ... ...a change in temperature can change outgoing energy until it balances incoming energy. Agreed "- The atmosphere is quite transparent to visible light (from the sun), hence the incoming energy is fairly constant." The incoming energy - agreed (the atmosphere is not transparent to solar infra red) "- Outgoing energy to space leaves the Earth as thermal IR, to which the atmosphere is partially transparent." Agreed (you are refering to the IR window) But what follows is unclear:- "- Greenhouse gases absorb IR, re-radiating it in all directions, including back to the ground, which re-absorbs most of what hits it." But don't GHGs also absorb the downward radiation? Surely they absorb the downward radiation from the upper atmosphere long before it gets to the ground And:- " This means that less IR goes to space at any particular temperature, and the Earth has a lower effective emissivity to space due to greenhouse gases." For me this is unclear. How does the downward radiation mean "less IR goes to space"? You said (above) "Greenhouse gases absorb IR, re-radiating it in all directions" - care to explain? You write "The thermal mass of the atmosphere is irrelevant." Not true, the atmosphere, with or without CO2 is a very important contributor to climate because it is a major distributor of heat between equator and poles. As such the mass and mean temperature are very important since they determine the thickness, from the thickness and the lapse rate you can determine the surface temperature This statement of yours is too vague:-> "Therefore the greenhouse effect means that the Earth must have a higher temperature than it would in the absence of the greenhouse gases in order to radiate away the energy it's receiving from sunlight. Don't be misled by convoluted side-tracking arguments." -> to dispute. When making claims about planetary temperature and climate change, all effects that may influence the temperature must be taken into account. Many posters here recognise that incoming radiation adds energy to a given location, few seem to recognise that, if the outgoing radiation exceeds the incoming, then the temperature cannot rise. -
RSVP at 19:43 PM on 15 December 2010Ocean acidification isn't serious
michael sweet #41 "stop speculating about processes you do not understand" Thanks for answering my question. In reading 41, 42, 43, and 44 it becomes clear that the problem is not simple. -
Riccardo at 19:38 PM on 15 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
HR the coefficient of determination need not be high; if the dependent variable depends on many factors you won't get a high r^2 anyways. As Dessler says "This does not mean that ΔTs exerts no control on ΔRcloud, but rather that the influence is hard to quantify because of the influence of other factors". Having said this, I'm sure no one is "satisfied" with a non statistically significant result, but what a scientist must do is to obtain as much informations as possible from the available data. Dessler conclude that the feedback is probably positive, a large negative feedback is very unlikely and that models do a decent job. This can be said even with a low r^2. -
Albatross at 17:27 PM on 15 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
HR, "when things start dropping below this we're worrying about reproducibility. r^2 of 2%, and being satisfied with that, are beyond my comprehension." Dessler is clearly not "satisfied with that" as you claim, please read the quote again carefully. The climate system is obviously not the controlled lab setting with which you are familiar. Although, I agree that 2% is extremely low, even for 120 data points, and even in the realm of feedbacks when r^2 tend to be relatively low. Then again, one doesn't need to change cloud cover much to have a marked impact on the energy budget of the climate system. And remember, that low r^2 applies to anyone working on this problem (including Spencer) and trying to extract a signal from noise in the system. -
Albatross at 17:14 PM on 15 December 2010An Even Cloudier Outlook for Low Climate Sensitivity
I obviously need to get some sleep. Murphy and Forster (2010) was written to address problems with Spencer and Braswell (2008), not Spencer and Braswell (2010). Sorry. With that said, it looks like Spencer and Braswell (2010) used the same, or similar, simple model used in Spencer and Braswell (2008).
Prev 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Next