Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  2043  2044  2045  2046  2047  2048  2049  2050  2051  2052  2053  2054  2055  2056  2057  2058  Next

Comments 102501 to 102550:

  1. Renewable Baseload Energy
    @247 Rob Honeycutt, The latest target for n* in China is 112 GW by 2020. That's sort of equivalent to ~340 GW wind. Things are moving very quickly in China and it's very possible that the Chinese are not showing their full hand yet. We shall see. I've some hope that China will move much faster than most western countries in emissions reductions and supply a large part of the industrial base to get the job done. It seems James Hansen thinks so too.
  2. Stratospheric Cooling and Tropospheric Warming
    Bob,when I was first trying to understand the greenhouse effect, I figured out that the statosphere should be cooling before I learnt that, in fact, it had been (which is always pleasant); but the mechanism I thought of was different to the one you describe. Specifically, it occured to me that the temperature in the stratosphere is determined by the balance between the energy from ulatraviolet light absorbed by ozone, and energy emited as IR light by CO2. If the CO2 is increased, then the amount of energy emitted by the CO2 at a given temperature will also increase. Therefore, the CO2, and surrounding gas, will cool until equilibrium is reached again. Doubling the energy radiated by the CO2 will result in an approximate 15% reduction in temperature, all else being equal. Of course, the mechanism you describe will also cool the stratosphere. If IR absorbed from the troposphere were the only energy input of the stratosphere, halving the energy recieved would again, I believe, reduce stratospheric temperatures by about 15%. Which of these two mechanisms is most important would depend on the ratio of the energy absorbed from UV light to that absorbed by IR light. I believe that makes the mechanism I have described (as have Spaceman spiff, Sphaerica and Joe Blog above) more important.
  3. A basic overview of Antarctic ice
    To be fair it's not just Robert, it's Copenhagan Diagnosis and the authors of these ice mass balances who are all underplaying the uncertainties in these processes.
  4. Renewable Baseload Energy
    Rob Honeycutt, Your post #250 is accepting that non-hydro renewables cannot provide significant baseload power now. That is progress that at least you have recognised that. So now the argument turns to what might be the case in the future. If only ...
  5. Renewable Baseload Energy
    KR, No I haven’t read the Czich’s paper you refer to (promoted by the American Wind Energy Association). I have read many of these sorts of reports. They come out, make a big splash in the Greenwash media, and eventually the industry gets around to debunking them. One such report along similar lines was the paper by Mark Jacobson “A path to sustainable energy by 2020” published in ‘Scientific American’. Read the critique here This critique, and the the "Zero Carbon Australia - Stationary Energy Plan - critique" will answer your questions about the renewablke energy advocacy studies that are trying to demonstrate that non-hydro renewable energy could, theoretically, provide baseload power. They are promoted by advocacy groups. They claimns cannot be demonstrated to be correct anywhere - despite making the same claims for at least 20 years and being continually proven wrong.
  6. Renewable Baseload Energy
    Peter @ 248... You're simply arguing for inaction on the basis that it hasn't happened yet. Look at your statements. You are using future tense in both cases. The abstract says, "there are good prospects..." But you are saying "cannot provide significant baseload generation." Both a reference to what can or can not be done. The analogy would be someone arguing in 1963 that you can't put a man on the moon by saying, "Look! Show me one man that has ever walked on the moon!"
  7. Renewable Baseload Energy
    @Peter Lang "By the way 50MW peak power is about 30% of the power of an average car - but only available in the day time!! Get the message?" This is all wrong, sorry. You seem to have not read the linked article at all: it is not "peak" power. The heat is collected and converted to steam, then electricity. This is done continuously - the excess heat is stored in the molten salt tank - which seamlessly can take over in the evening hours or when clouds are there (You can easily think of a larger tank by the way). The tank provides continuously power for roughly 8 h.
  8. Renewable Baseload Energy
    Rob Honeycutt, You did not provide the information I asked for. Pointing to one or more of the thousands of studies by renewable energy advocates which say that there are 'prospects' for renewables is simply trying to distract from revealing or accepting the truth of the matter. I've read plenty of these studies. You quoted this fro the abstract: " "Using locally mass-produced wind turbines there are good prospects that wind power would be cost-competitive with coal power," That should be enough to show you they are talking about "prospects" (i.e. pure advocacy for a belief, a hope, a wish and a prayer) and there is no mention that they can provide baseload. Clearly, you still do not understand what baseload means. If you want to uead the link I provided. If you don't want to understand, I cannot be bothered discussing it with you any more. The answer is clear. Non hydro renewables cannot provide significant baseload generation.
  9. A basic overview of Antarctic ice
    79 muoncounter "One thing these data do not show is a gain in ice. So your criticism must therefore be directed at those who make conclusions using no data whatsoever." Look I didn't want to avoid this question. I'll agree with you that those predicting gains are on shaky ground but what I'm concerned with is the sureness of those predicting losses. I think it's wrong to suggest that the data is all in one direction. I don't know if you can get round AGU's paywall but here's a new estimate of PGR using GPS from 2009 GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, VOL. 10, Q10005, 11 PP., 2009 doi:10.1029/2009GC002642 Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance Bevis et al (hopefully not Butthead) Abstract "We present preliminary geodetic estimates for vertical bedrock velocity at twelve survey GPS stations in the West Antarctic GPS Network, an additional survey station in the northern Antarctic Peninsula, and eleven continuous GPS stations distributed across the continent. The spatial pattern of these velocities is not consistent with any postglacial rebound (PGR) model known to us. Four leading PGR models appear to be overpredicting uplift rates in the Transantarctic Mountains and West Antarctica and underpredicting them in the peninsula north of 65°. This discrepancy cannot be explained in terms of an elastic response to modern ice loss (except, perhaps, in part of the peninsula). Therefore, our initial geodetic results suggest that most GRACE ice mass rate estimates, which are critically dependent on a PGR correction, are systematically biased and are overpredicting ice loss for the continent as a whole. " Unfortunately as the paper points out it is impossible for them to know the full extent of this bias but it is likely a "significant fraction of all published ice mass rates derived from GRACE". Let's wait and see but as I said PGR is still contraversial. I'll agree with you that suggestions of ice mass gain are unwarranted but I think it's also reasonable to think that ice mass losses have been over-estimated. It worth pointing out that GRACE actually measures the equivalent of an ice mass gain for Antarctica, it is only the large estimates of PGR that turns this into an ice mass loss so getting PGR/GIA right is very important. The above is only one paper but a review of the subject in 2010 "Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contributionof Ground-Based Geodetic Observations" With a whooping 17 authors commented on the Bevis paper saying "their major conclusions appear robust". More generally on the subject of PGR they say "It is clear that GIA-related surface displacement observation and analysis around Antarctica, as with Greenland, is yet to reach maturity and further developments are required." I'm happy with 'wait and see' but I don't think Robert Way's article is coming to that conclusion so I'll stay in firm opposition to his position.
  10. Renewable Baseload Energy
    And again, I have to ask... IF wind/solar can not possibly be economically feasible and IF nuclear is the obvious answer (as Peter claims) why would China be planning to install double the GW of power in wind over nuclear by 2020? China could very easily take the same route as France and go all out for nuclear. They aren't. Why?
  11. Renewable Baseload Energy
    @Pater Lang don't type so quickly :) I get that you asked for examples, they were given. Are they cost effective today? Are the sufficient today? 2 x no. Was the first coal plant cost effective? sufficient? Same for nuclear or any new thing. Should we therefor abandon them - No. My 2 cent. And i dislike your agressive, unpolite tone.
  12. Renewable Baseload Energy
    Peter Lang - I think your accusation of "misinformation" is both highly insulting and contrary to the comments policy on this site. I do not see an "Addendum" in your "Solar Realities" linked article, nor any reference to such in this thread. What I do see is a single-site power estimate (solar only), no consideration of an integrated grid, wind power (which would cover a considerable portion of the lower nighttime demands), multiple siting to minimize single site low periods, etc. Without consideration of these factors your "Realities" article is quite unrealistic. I have not discussed costs because I do not have the information - I will clearly admit that. What I have been attempting to discuss for quite some time is the technical possibility of baseload power using renewables. You have not proven your technical point with that article in any fashion.
  13. Renewable Baseload Energy
    @Peter Lang Multiple links were provided (#161, #237, #240 just to mention some hints), you did not respond to them. Repeating your statement does not make it more valuable or true.
  14. Stratospheric Cooling and Tropospheric Warming
    Spaceman spiff and Sphaerica have hit the nail on the head. Bob, you really do have to ask yourself why the tropopause is cooler than the stratosphere. Its a contradiction to this article. The measured LW spectrum often shown, are showing that in the co2 band, its escaping to space at around 220k, and given the fact that the tropopause is cooler than the stratosphere, we can safely assume its below this in the troposphere that the average LW escapes to space from co2. Some will be absorbed by co2 and O3, but thats not the predominant reason for the T profiles, or why elevating co2 should cause the stratosphere to cool.
  15. Renewable Baseload Energy
    swieder, Your understanding of Andasol is wrong. I suggest you read the "Zero Carbon Australia - Stationary Energy Plan - Critique". It does not provide basload power and is hugely expensive (about 5 times the cost of (unprintable). By the way 50MW peak power is about 30% of the power of an average car - but only available in the day time!! Get the message? We'd need 1000 of these monsters to provide our pour during the day and a few hours at tnight and still need just as many reliable fossil fuel or (unprintable) power stations to provide the power during the night. They wouldn't replace any fossil fuel plants. Get the message yet?
  16. Renewable Baseload Energy
    Peter... "Non-hydro renewables cannot provide significant baseload power. If you say they can then show me." Do you want to try to understand or are you simply set on trying to misinform people about renewables? (Such statements always cut both ways.) Once again, please read Large-scale baseload wind power in China. Quoting from the abstract: "Using locally mass-produced wind turbines there are good prospects that wind power would be cost-competitive with coal power, on a lifecycle cost basis, while providing substantial net environmental benefits."
  17. Renewable Baseload Energy
    KR, All that is covered. Look at the "Solar Power Realities - Addendum". Also look at the "Zero Carbon Australia - Statioonary Energy Plan - Critique" Do you want to try to understand or are you simply set on trying to promote renewables by misinformation. I am still waiting for you and others to provide the information I requested in #224. If you can't why don't you simply admit it. The fact is clear. Non-hydro renewables cannot provide significant baseload power. If you say they can then show me.
  18. Renewable Baseload Energy
    I forgot to mention the Andasol-power plant in Spain - Andasol 1 and 2 are already working and in operation, Andasol 3 is under construction since Sep 2009. Andasol is solar thermal only and has a huge storage tank (molten salt). Andasol can run continuously since the tank has enough energy to run for 8 consecutive hours over night. Each plant provides gross electricity output of 50 MWe. I think Australia might have some good places for that, too.
  19. 2nd law of thermodynamics contradicts greenhouse theory
    BP "If OHC is supposed to be the true indicator of global warming and we have only seven years of reliable OHC data, then it is not cherry-picking to use what we have, is it?" Well actually I think true total OHC is long way from being tied down. However, can we assume that say 7 years down the track from here, and with good OHC data, if that OHC shows the warming trend, you will finally accept that we have a warming planet and its not just some measurement error?
  20. Renewable Baseload Energy
    Peter Lang - Looking at your "Solar Power Realities" article, I see no mention of multiple sites. You appear to be taking the worst case scenario (a single site), and applying those production numbers to a system as a whole. That's quite simply not realistic. Any reasonable renewable power plan (whether supplementary or baseline) will include multiple sites chosen for low correlation (negative, preferably), a mix of solar and wind, etc. That hugely lowers the power storage and backup turbine requirements, albeit with an increase in transmission costs. A true comparison should include multiple siting in your calculations.
  21. Renewable Baseload Energy
    adelady, The link you provided is a 30MB pdf by Geoscience Australia. I didn't download it but I am familiar with the argument. It runs something like this: "there are very large quantities of heat at depth and in some places they are closer to the surface than others". That is all true. Just as there is limitless heat in the Sun. The problem with both geothermal and solar is turning that enormous amount of heat into electricity. In both cases the heat is diffuse, low energy density, and difficult to extract. This paper explains some of the problems with extracting the heat from Hot Dry Rock (similar problems apply to Hot Fractured Rock which is what we are trying to develop in Australia).
  22. Renewable Baseload Energy
    Peter Lang - I'll ask again, have you read Czisch and his discussion of minimum continuous power available when the system as a whole (rather than individual sites) is considered? You've been pointed to this article on European renewable power generation several times, but have not (as far as I've seen) commented on it.
  23. Renewable Baseload Energy
    As I posted you before in #161, the german "Kombikraftwerk" was a study, were existing, real data from existing, real renewable PV, Wind, hydro (storage) and biomass power generators were taken over two consecutive years. Those real generation data were used to virtually combine those 36 power distributed generation sources and look at the combined output (resolution 1 h). In particular wind and PV very often complement each other (wind: strong in morning/evening, PV: strong at noon). Anyway, the outcome was that this kind of "virtual" power plant can fulfill all the requirements of baseload power. Its called "virtual" not because it is only a simulation but since the distributed sites will always be distributed and only connected virtually as a single plant to a control room which is tied to the rest of the grid. You can think of several of these virtual plants in one grid. Heck, in Germany there was > 15% renewable share of electricity production already in 2009 - and in 2020 the estimate is somewhere > 40%.
  24. Renewable Baseload Energy
    To demonstrate that non-hydro renewables can provide baseload generation, could those advocating renewables please provide the information I requested in #224. If you cannot, then I suggest the case is proven: "Non-hydro Renewables cannot provide significant baseload generation".
  25. Renewable Baseload Energy
    SNRatio, To get some perspective on the amount of land that would need to be innundated to allow solar to provide all our baseload power (a limit condition to help appreciate the scale of the problem), and the cost, I'd urge you to look at "Solar Power Realities". The conclusions state: "Solar power is uneconomic. The capital cost of solar power would be 25 times more than power to provide the NEM’s demand. The minimum power output, not the peak or average, is the main factor governing solar power’s economic viability. The least cost solar option would emit 20 times more CO2 (over the full life cycle) and use at least 400 times more land area compared with . Government mandates and subsidies hide the true cost of renewable energy." To power the Australian National Electricity Market with solar PV and pumped hydro would require hydro dams that innundate 8,000 km2 of land area. However, we can't get approval to build any new dams of any size. They are opposed by you know who.
  26. Stratospheric Cooling and Tropospheric Warming
    I think this explanation is incorrect... Ok so why is the tropopause, cooler than in the stratosphere? It shouldnt be by this reasoning, we should have an adiabatic lapse rate all the way to the outer atmosphere. Now, the average height the LW escapes the atmosphere from the troposphere is around 6km, in the co2 band its around 10km(On average) Most is not reabsorbed in the stratosphere, 90% of the atmosphere is in the troposphere. In fact co2 is a net emmitter at those pressures(much greater distances between molecules), at 2/1. Ramanthan & Dickenson 79
  27. Renewable Baseload Energy
    Peter... And if you watch the talk given by Dr. Chu he uses a story from Australia to illustrate his point. Chu toured a modern automated factory in China producing some of the most highly efficient solar panels in the world. The technology came from an Australian who could not get anything accomplished at home but found enthusiastic interest in China. The factory producing these panels is not in China because of labor rates. It's an almost completely automated factory. It could be located anywhere. Now China is selling these panels to the rest of the world because the guy's own country couldn't see fit to invest. You know, it's the people who sit around compiling reasons that things can't be done who ultimately never get anything done. The people who find a way to do it are the leaders of the world.
  28. Renewable Baseload Energy
    @Peter Lang You quote me not completely: my point was that of 500 GWp renewable (which is 30% of the estimated need for China in 2020 if you read the report i linked to), 200GWp is non-hydro. So the 200 GWp is already over your artificial 10% threshold you are willing to neglect. I say the 200 GWp is large enough in order that baseload-ability has to be considered. Also, I am looking forward to the rest of my points in #207 and not only the first 5 lines.
  29. A basic overview of Antarctic ice
    79 muoncounter "This is akin to the 'it hasn't warmed since 1998' nonsense." Are you suggesting it's my argument that's akin to this? Because I thought I was trying to argue the opposite. I was trying to argue that generating trends on the back of short term data sets was dangerous. I specifically asked you if you were happy with fitting short term trends because I am not. If anything, because we have so little data, this is even more susceptible to false interpretation than the global temperature record. We actuall have no idea how interannual variability in the antarctic ice mass balance. So my worry still continues that V09 can make such strong assertions about the rate of ice mass loss doubling over the past decade is suspect. It really all does hinge on the anomalous 2006 data and the fact the author choose to start and end her trends on that year. That is not a matter of opinion, that's a fact. This is not just a problem with V09, Chen 09 comes to the same conclusion by ending and starting her/his trend around the same year. 2006 seems to be the important period for generating these trends. I wonder how you think the 2006 data should be interpreted and handled? Or whether these papers should acknowledge the problem of inter-annual variability?
  30. Renewable Baseload Energy
    Swieder, "200 GWp are non-hydro. I am reluctant to agree to your point that that qualifies to be "off-topic" when we talk about baseload." Please explain how 200GWp power has anything to do with baseload power. Do you understand what baseload means? I think you don't. Can I urge you (and others) to read "The Case for Baseload" to assist you to understand what baseload means in the electricity industry (as opposed to the way renewable energy advocates are trying to re define it)
  31. We're heading into an ice age
    Re: NQuestofApollo (126) To summarize: You have taken issue with this statement I made earlier:
    "We have known about the GHG effect of CO2 for nearly two centuries - this is well-understood and not seriously questioned by any competent scientist anywhere. Google Tyndall, Arrhenius or Fourier sometime."
    Am I correct? Proceeding as if so; granted its been some 25 years since my college days, but it's my understanding that the GHE is basic physics, taught in high-schools these days. Please correct me if I'm wrong on that. It doesn't change the fact that the GHE is basic physics; numerous videos are available on Youtube attesting to and demonstrating that fact that you can replicate in your home by you, if so inclined.
    "It should be possible to explain the laws of physics to a barmaid." ~ Albert Einstein
    I think I'll go out right now to ascertain how performable this is for the GHE; wish me luck... PS: To make the moderators life here a little easier, please keep in mind the topic of the thread you post questions on. For example, this thread is about "Are we heading into a new Ice Age?". For question other than the focus of this thread, such as your references to the Oregon Petition or Climategate, please use the search function in the upper left of each page to find a more appropriate thread to post those concerns on. Comments deemed off-topic will be deleted. Thanks in advance! The Yooper
  32. Renewable Baseload Energy
    Just some comments about land/resource use: 1. Hydro will almost always have negative impact on landscape, but used in conjunction with solar/wind/biomass, with pumping, it can be rather non-invasive, considered its effect. Huge dams and small heights is something entirely different, and not distinguishing the different forms for utilization seems rather unserious to me. 2. It is rather incredible for me to have discussions about wind power without any reference to possible optimizations of stable output whatsoever. A system-wide optimization will almost always lead to very different design from local optimizations (for example operators maximizing their total production, with small or no regard to total supply situation, and subject to existing grid/transmission constraints). And the whole transmission system may have to be changed a lot. Which may require huge initial investments, but total costs over system lifetime are not necessarily very high. 3. It is impossible to discuss future energy systems on the basis of simple system changes, like phasing in PV, "everything else being equal". Even with no introduction of renewables at all, everything else will _not_ be equal over the course of some decades, which is the actual planning horizon for energy systems. I have to repeat it: "Baseload" is _not_ a well defined quantity, and with sufficiently strong incentives, renewables will _per definition_ be able to cover baseload. (As they have done in human history until fossil fuels came into widespread use.)
  33. Renewable Baseload Energy
    Awareness about the cost of renewables is spreading in Australia. Here are some recent examples: 1. "The Great Wind Rush" An excellent article in the 'Weekend Australian' about wind energy (and reference to the emission avoidance costs from my 2009 paper): http://www.theaustralian.com.au/national-affairs/the-great-wind-rush/story-fn59niix-1225961297137 2. "Emission Reductions are not Blowin' in the Wind" - Another excellent article in Monday’s 'Australian' comparing the costs of low emissions generation technologies and dismissing wind and solar. This is a good article ands well worth reading (unfortunately the chart is not shown in the article) http://www.theaustralian.com.au/national-affairs/emission-reductions-are-not-blowin-in-the-wind/story-fn59niix-1225962376534 You can see the chart here: http://bravenewclimate.com/2010/11/28/nuclear-is-the-least-cost-low-carbon-baseload-power-source/ 4. About three weeks ago, the NSW state government cut its feed in tariff for solar PV from 60c/kWh to 20c/kWh 5. The Australian Capital Territory (ACT) Government (A Labor-Green alliance), about two weeks ago, admitted its solar power program will increase the cost of electricity for users by about 25%. This has come as a shock and wake up call to the ACT residents (the greenest of all Australian State and Territory governments) 6. Yesterday the federal government cut its subsidies to the up front costs of solar panels from $6300 to $5000 per 1.5kW. It also announced the subsidies would be cut further each year and would be phased out a year earlier than previously planned. They also announced that cutting the subsidy from $6300 to $5000 would save the average householder $12 per year. So the Federal subsidy alone costs the average householder about $60 per year. The Feed in tariffs cost far more. To put this in perspective, solar power generates about 0.1% of Australia’s electricity. Imagine what the subsidies would be if solar generated 10%, 20% or 50% of our electricity. Playing with numbers: 50% / 0.1% x ($60 + $225) pa = $142,500 pa per household subsidy. Sure, you can pick at details about the numbers, but try to understand the scale of just how ludicrous is what we’ve been doing trying to promote solar and wind power.
  34. Stratospheric Cooling and Tropospheric Warming
    I'm looking for it, but in the interim, the key to the molecules behaving differently comes from two basic factors. The first is that energy can be gained or lost through one of two mechanisms (in this model); absorption/emission of radiation, or through a collision. The second is the fact that the density of the atmosphere dramatically changes the relative probabilities and likely timings of the two events. In the more dense troposphere, collisions are more likely, and so likely that they will probably occur before a CO2 molecule gets a chance to emit its vibrational energy as radiation (but not always, and the reverse can happen, too). In the less dense stratosphere, collisions are highly unlikely, and so a CO2 molecule is more likely to emit its vibrational energy as radiation before colliding with another molecule. But I'll keep looking for the source. All I remember right now was that it included a fairly effective flash animation of CO2 and O2/N2 molecules (close up, so to speak). I think it was put together by a major MSM news corporation, but that part is fuzzy in my addled mind.
  35. Ice age predicted in the 70s
    cjshaker, number 7 in your list states : A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation. Does William Connelly interpret this paper a different way ?
  36. Renewable Baseload Energy
    Peter... Also, I would hold that commenting on China's 20% renewables is exactly on topic. You're saying that anything over 10% is not feasible. China quite obviously does not agree with you. Please see the following: Large-scale baseload wind power in China Debra J. Lew, Robert H. Williams, Xie Shaoxiong, Zhang Shihui 2009.
  37. Renewable Baseload Energy
    @Peter Lang "Most of China's renewables are hydro. [...]So the comment about China targeting 20% renewables is off topic." The argument from Chu was probably more referring to something like the Martinot report [1]. So for 2020, the goal is 500 GWp renewable energy in China of which 200 GWp are non-hydro. I am reluctant to agree to your point that that qualifies to be "off-topic"when we talk about baseload. You repeatedly state "[...] renewables cannot provide baseload generation" but i actually have the impression your argument is more about "If we ignore cost, I guess anything is "possible"." as you said in #202. I strongly propose we distinguish between those two: a couple of posters (including me) linked studies which show that technically, renewables can provide baseload power as a reliable power source to the energy mix. Regarding cost of these renewable baseload solutons I admit that i have no data regarding the cost but my guess is that they are higher than established solutions. However, this does not quaify for not being considered at all. The question then is: are all externalized costs accounted for when talking about cost of established solutions of baseload? And second: how fast can cost for renewable baseload power decrease? Third: is the society willing to accept the (lets say) "activtion cost" for this change to happen? Of course the final solution must be an economicaly viable under given boundary conditions (which might change by the way: politically and economically). I am not questioning the ability of society to bear it, but the willingness is a different thing. How could something like the bold race to the moon actually work out if you look at economics only? #225 "adelady, You link didn't work." copy it manually and remove the last slash "\", then it works fine. [1] http://www.martinot.info/Martinot_FEP4_prepub.pdf
    Moderator Response: [Daniel Bailey] Fixed that link per your tip; thanks!
  38. Renewable Baseload Energy
    Peter... I don't believe Dr. Chu is talking about hydro or nuclear. I think he's only talking about wind and solar. Here is what I find: "In 2009, the rumored energy targets for China for 2020 were 300 GW Hydro, 75GW nuclear, 150GW from renewable if targets are reached. 46% of power would be from non-coal sources if natural gas usage is increased as projected." Link. So, China is looking at 46% carbon-free electricity by 2020. So, I still hold your statement that anything over 10% renewables (wind and solar) is not feasible to be inaccurate. If you will notice as well, China is putting in twice as much wind/solar as they are nuclear. Why would that be? It's certainly not because of protesters or onerous regulation. Could it be that wind and solar have other big advantages? Exportable technologies. Improving efficiencies. Low hazards (failures). No hazardous materials.
  39. We're heading into an ice age
    More for NQuestofApollo to read, this time concerning CO2/temperature correlation : Go here, an external website for a change. Very technical, though, so be warned.
  40. We're heading into an ice age
    More for NQuestofApollo to read, this time concerning mid-century cooling : Go here. There are three different versions there, so pick the one you feel most comfortable with.
  41. Stratospheric Cooling and Tropospheric Warming
    Sphaerica - 39 I can't say that I understand the mechanism that you describe. Could you provide the source. It does seem odd that in a situation where you have two types of molecules all at the same temperature, one type of molecule is going to lose energy while the other gains energy. It seems to defy some fundamental law such as heat energy can only be transferred from a hot to a cold body and not from a cold to a hot body. Also, Gavin basically told me that I was correct in my explanation. Bob
  42. We're heading into an ice age
    More for NQuestofApollo to read, this time concerning the Arctic : Go here, here, here, here, and here.
  43. Renewable Baseload Energy
    adelady, You link didn't work. Can you provide a link showing how much of Australia's electricity is supplied by geothermal? Since you probably wont, I'll answer the question for other readers. The answer is nil! Furthermore, the hot dry/fractured rock type of geoothermal Australia is trying to develop has never been successful anywhere in the world despite almost 40 years of attempts. Sure, we will get a little from demonstration plants in time, at huge cost to the tax payer, but it is insignificant. It is another massive waste of time, effort and a diversion of resources from solutions that have proved they can actually cut emissions significantly - in fact, theese solutions could cut emissions from electricity generation by nearly 100% in about 30 years, and do so in an economically rational way.
    Moderator Response: [Daniel Bailey] Fixed adelady's link per swieder's guidance; works now.
  44. We're heading into an ice age
    126: "I've been told to look at the sea ice extent. So, I have - it has increase for the last three years." Sorry, but that's just flat wrong. Someone has been feeding you some bogus information. See SkS articles here, here and here, among others; also Arctic sea ice falls to third-lowest extent; downward trend persists
  45. Renewable Baseload Energy
    Michael Sweet, “I am tired of the unsupported claims from nuclear proponents” Likewise, I am tired of the unsupported claims about non-hydro renewables being able to provide baseload power. If non-hydro renewables can provide baseload generation, in significant quantities, show me where it is being done. I am not interested in theoretical studies by the advocates who are being fed almost entirely by tax payers’ money. Show me actual output from solar thermal and wind generation that demonstrate they can provide baseload generation. I am looking for charts like Figure 6 and 7 here which shows the actual output from a solar PV station at 30 minute intervals for two years. Note that the capacity factor on the worst days in winter is 0.75%. Some baseload! So, please, for a start, show me two years of output from a solar thermal station with capacity factor around 85% and availability over 90%. If you are going to argue that if you throw enough renewable technologies into the mix, then provide the costs. I’ll advise that you can add as many technologies as you like, you will still not have reliable power and the capital cost is the sum of all the technologies – that is orders of magnitude more costly than with fossil fuel and baseload generators. France shows the proven, low cost way to generate near-zero emission electricity.
  46. 2nd law of thermodynamics contradicts greenhouse theory
    damorbel - You should really read that article again. Carefully. Sunlight (like the electric heater in Spencers blog) passes through the atmosphere essentially unaffected by greenhouse gases, due to its spectra (primarily visible light). Thermal IR from the Earth, on the other hand, is strongly affected by greenhouse gas presence, which act as the 'blanket'. GHG's change the rate of loss, while input energy remains almost unchanged by them. Hence the atmosphere acts as a true "one-way mirror". Note that most sunlight passes through the atmosphere (affected mostly by Rayleigh scatter), while most IR does not (from Barrett Bellamy Climate) You've been pointed to this information multiple times, by multiple posters, yet you insist that your grasp of the physics is superior to the other contributors. I suggest you go read some of the very informative links you've been pointed to.
  47. Renewable Baseload Energy
    Geothermal not in Australia? Check out page 7 of this report and compare the geothermal numbers to any of the others.
  48. We're heading into an ice age
    More for NQuestofApollo to read, this time concerning the IPCC : Go here and you will see links to the 831 authors and the membership of the task groups. Wasn't difficult to find.
  49. Stratospheric Cooling and Tropospheric Warming
    In the above post, I responded to the wrong person. I meant to respond to damorbel
  50. 2nd law of thermodynamics contradicts greenhouse theory
    damorbel, If you're contesting Dr Roy's very basic physics, you need to go back there, read his post again, skip all the comments but read all Dr Roy's responses to those comments. Your argument about insulating heat being "in" the container already is irrelevant. What matters is that the earth has constant input of heat / radiation. It just happens to be from the sun. KRs reference @251 really is a fantastic one. Even if it takes you all day or longer, read it, reread it, copy it by hand, rewrite it - leave it for a while and then read it again. Whatever. If study techniques need to be applied, apply them. Dr Roy is a good teacher.

Prev  2043  2044  2045  2046  2047  2048  2049  2050  2051  2052  2053  2054  2055  2056  2057  2058  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us