Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  1950  1951  1952  1953  1954  1955  1956  1957  1958  1959  1960  1961  1962  1963  1964  1965  Next

Comments 97851 to 97900:

  1. It's Pacific Decadal Oscillation
    #64: "Do we really need much more proof " Your examples hardly prove anything. In one case el Nino coincides with a warm to cold PDO shift, in another, it coincides with cold to warm. In one case la Nina coincides with highest PDO, in another it coincides with lowest PDO. Is that supposed to be causal?
  2. Hurricanes aren't linked to global warming
    #23: "Named storms is ... ." But your 'scatterplot' is meaningful? Hardly. Let's stop throwing judgments around. Perhaps an appeal to actual science is in order. Here's Elsner 2008: Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere ... Knutson et al 2008 report a different view: we assess, in our model system, the changes in large-scale climate that are projected to occur by the end of the twenty-first century by an ensemble of global climate models, and find that Atlantic hurricane and tropical storm frequencies are reduced. At the same time, near-storm rainfall rates increase substantially ... What's worse? More frequent storms or stronger storms with heavier rainfall events? Check the residents of the US Gulf Coast or Queensland for their preferences.
  3. Northern hemisphere warming rates: More than you may have heard
    #59. I've started with a 12-month momentum analysis on seasonally adjusted GISS data since 1900. Below I've pasted the momentum data for each season (wi=winter, sp=spring, su=summer, fa=fall) for the last decade (which some claim hasn't shown any or much warming). The Momentum indicator is a speed of movement (or rate of change) indicator, that is designed to identify the speed (or strength) of a price movement. The fall and winter 2010 seasonally adjusted data are missing since there's not enough data yet to calculate seasonally adjusted values for those seasons. Either way, if you'd plot this data and run a linear regression line; the trend is negative: -0.0042, but the r2 is also very low: 0.0042. Now a low r2 doesn't mean it's not significant (but that's a whole other story), what this tells me is that momentum on average over the last 10 years hasn't changed much, if any the momentum of temperature is on average downwards moving towards negative territory indicating to me that the rate of change in temperature has been slowing down slowly. Now if this were a stock, I would start to consider selling it as it's upward movement (yes it's still going up) is starting to slow down (a term also called: going parabolic) season/date momentum 2000.0 wi 11% 2000.3 sp -5% 2000.5 su -9% 2000.8 fa -10% 2001.0 wi -22% 2001.3 sp -25% 2001.5 su -42% 2001.8 fa 12% 2002.0 wi 21% 2002.3 sp 32% 2002.5 su 20% 2002.8 fa 28% 2003.0 wi 31% 2003.3 sp 4% 2003.5 su 0% 2003.8 fa 35% 2004.0 wi 41% 2004.3 sp 8% 2004.5 su -17% 2004.8 fa -21% 2005.0 wi 12% 2005.3 sp -11% 2005.5 su -6% 2005.8 fa 14% 2006.0 wi 38% 2006.3 sp 0% 2006.5 su -22% 2006.8 fa 1% 2007.0 wi 19% 2007.3 sp 18% 2007.5 su 18% 2007.8 fa 3% 2008.0 wi 10% 2008.3 sp -33% 2008.5 su -27% 2008.8 fa -29% 2009.0 wi 18% 2009.3 sp -1% 2009.5 su -23% 2009.8 fa 8% 2010.0 wi 14% 2010.3 sp -2% 2010.5 su -1% 2010.8 fa 2011.0 wi Looking at the entire data set, momentum spiked in 1995 and has been decreasing ever since, with a big negative momentum in 2001.
  4. Monckton Myth #5: Dangerous Warming
    Bill Peddie should also probably look at Lindzen and Choi show low climate sensitivity.
  5. Could global warming be caused by natural cycles?
    #168: Pirate, Try Google Scholar. Type a search phrase such as 'climate change natural cycle' and look at the published science that becomes available to you. That search just gave me 1.39 million results, but the even just the top 30 or so might do.
  6. Could global warming be caused by natural cycles?
    #169: "completing a research paper on AGW " Are you actually researching the science of AGW? It sounds like you've already formed your conclusions. "normal state of the planet is to be glaciated." Really? During what time period? You might want to check your sources for that. Be aware that on this site, you need to show your work and avoid making sweeping unsubstantiated generalizations (especially those that are false). "I do not personally believe that increased levels of CO2 can initiate major changes in the climate. I do believe they can contribute a great deal to climate change." In a science paper, your personal beliefs shouldn't interfere. You should look at prior threads Its not us, Its a natural cycle and CO2 is not the only driver. Preferably, for your grade's sake, before you form your conclusions.
  7. Monckton Myth #5: Dangerous Warming
    Bill Peddie: Most of the atmospheric scientists I am familiar with say that water is the main greenhouse gas and that carbon dioxide is mainly coming from the sea in response to slightly warmer temperatures. Names and cites, please.
  8. Infographic on where global warming is going
    The only problem I have with your graphs is you're cherry picking 1975. How about going back to 1936 and not adjusting it at all and we might see a very different slope.
  9. Monckton Myth #5: Dangerous Warming
    Nicely illustrates the point I keep trying to drive home with people. That being the fact that no one can state with any certainty just how far we can push the planet before the situation gets out of hand (not that it already isn't). I simply can't fathom why the human race is always so prepared to play Russian Roulette with the planet. The real danger is that should it get out of hand, decisions are likely to be made that could propel us into an even worse geo-engineering experiment than the one that was undertaken in the Industrial Revolution and has persisted until present day. The whole thing keeps reminding me of that old adage about "biting the hand that feeds you". Sooner or later it's going to bite back very hard.
  10. Monckton Myth #3: Linear Warming
    NETDR, there is an intercept because we didn't start at 1 ppm CO2 at the year 0 AD. I don't think you've followed what we're actually plotting here... please go through the maths to see. Assuming no acceleration above exponential (even though we know there is, you can tell from the residuals which you have simply ignored) you can use the linear fit for the whole period to estimate 2100 CO2 ppm. It's 580 ppm CO2. But that's wrong, because it's accelerating. If we use the fit to the log(CO2) as a function of time for the past 20 years, you get over 670 ppm CO2 by 2100. That clearly shows it's accelerating, anyone with a spreadsheet and a clue can check this for themselves. (and of course, as there is an acceleration, that means that 670 ppm is a minimum bound and the real value is higher). What do you estimate that CO2 will be by 2100?
  11. Northern hemisphere warming rates: More than you may have heard
    #57 Exactly, why then bother doing all this fancy computer model predictions on what the temperature will be in 2020 and beyond? Again, it has NOTHING to do with how stocks compare to temperature, it has ALL to do in applying different analytical/mathematical/data tools in understanding what has, is and will happen. Isn't that what we are constantly trying to do. Isn't that the holy grail? Or are you telling me we've got it all figured out? If that be the case, we can all sit back, relax, and let it get nice and toasty.. or???
  12. Northern hemisphere warming rates: More than you may have heard
    #58: "Most of the trend analyzes tools (I suggested) " As I said here, data are ready and waiting for you to get started. I'm sure we'd be interested in your results.
  13. Could global warming be caused by natural cycles?
    I'm currently pursuing a M. Sci. in Environmental Systems Engineering at a major liberal arts university in the US. I'm completing a research paper on AGW and it's relationship to climate change. A google search eventually led me to this site. My personal beliefs on AGW and climate change are that the climate has historically changed due to various natural cycles. There are macro-cycles and micro-cycles due to many, many reasons. The latest influence is the increased CO2 due to anthropogenic sources. This increase in CO2 almost certainly has an effect. My extensive research has led me to formulate an opinion. My professor requires us to look at research from various institutions in order to have a complete and balanced input before we generate our output. This site is generally scientific and has been valuable to me. Climate change is a natural and cyclical phenomenon that has occurred over the history of this planet. The normal state of the planet is to be glaciated. We are currently in an interglacial period and according to the timescale are clos to the descent into another glacial period. Atmospheric CO2 levels are rising beyond historical levels. This is almost certainly due to the contributions from humans. It is reasonable to expect these rises in CO2 to contribute to further warming, i.e. climate change. The severity of these changes cannot be accurately determined, though some modeling is predicting the possibility of dire consequences. I do not personally believe that increased levels of CO2 can initiate major changes in the climate. I do believe they can contribute a great deal to climate change. A classmate of mine is conducting research into increased CO2 levels in greenhouses. She has shown increased yield and more vigorous growth from corn, beans and roses. Qualitative and quantitative improvements have been noted. She has not detected any statistically valid difference in temperature. As a legitimate question, does anyone here know why this has not occurred or where she might find some previous research on the matter? Unfortunately, politics and profiteering have entered the scientific discussion. Battle lines have been drawn and the various "sides" are digging into the sand and very little, if any, constructive debate is going on. Legislated change is unlikely to occur. This is unfortunate, because it appears little will be done to prevent any changes and the world will have to switch from a mode of prevention to a mode of reaction. If necessary.
    Moderator Response: See "It’s not bad," "CO2 is not a pollutant," and "CO2 effect is weak." And "Models are unreliable." Usually the comments have additional, excellent information; for example, you'll find links to the U.S. Dept. of Agriculture's report on CO2 and temperature's effects on crops. You also should skim the list of Arguments you can get to by clicking the "Arguments" link in the horizontal blue bar at the top of the page. And don't hesitate to use the Search field at the top left of the page.
  14. Monckton Myth #3: Linear Warming
    Aargh, hit enter too soon. ...so I am surprised your post @69 was even permitted.
  15. Monckton Myth #3: Linear Warming
    BP, You continue to focus on ridiculously short periods, as you state in your post @69, to obfuscate and confuse people. And what makes it even more shameful on your part is that I know that you know deductions made about trends in these data over such short periods are meaningless, both scientifically and statistically. Besides, your post if off topic, so
  16. Monckton Myth #5: Dangerous Warming
    I get quite uncomfortable when I see sentences and paragraphs lifted from popular articles and argued against at a different level. Most of the atmospheric scientists I am familiar with say that water is the main greenhouse gas and that carbon dioxide is mainly coming from the sea in response to slightly warmer temperatures. Prof Lindzen who with respect knows far more about the atmosphere than I suspect you or I will ever do points out that it is what happens at a local level rather than a global level that really matters. His comments on carbon credits are worth a read if only to see what has been going on behind the scenes. Read his paper on my site http://billpeddie.wordpress.com and make up your own mind.
  17. Northern hemisphere warming rates: More than you may have heard
    #56. I really don't know what you are babbling about. My suggestion to use so stock trend analyzes tools is not based at all "on the premise that climate variables are so numerous, complex and intricate that we can never understand them, as is the case with the thousands and thousands of stocks." It's just about using different tools to help us understand better (or are you suggesting that we've figured it all out already?). Honestly, we understand the stock market well; in part because there are many great data analyzes tools for that available. There is a lot of knowledge to consider in stocks, or do you think it's all random? If that be the case, nobody would ever buy a stock; way to risky. Most of the trend analyzes tools (I suggested) are good for increasing markets (on average stocks need to go up, or there is no reason to own them), and therefore these tools could be applicable to temperature data too since that's been going up since 70s'-80s as well. I appreciate the open-mind set to possible new ways... but why would you... you've got it all figured out.
  18. Monckton Myth #3: Linear Warming
    Dikran, Interestingly Lindzen used the same "trick" of global SATs that you showed @75 in his debate with Andy Dessler.
  19. Dikran Marsupial at 04:13 AM on 21 January 2011
    Monckton Myth #3: Linear Warming
    Actually NETDR is right, I've just plotted the HADCRUT surface temperature dataset, in degrees Kelvin (starting at zero), and it definitely looks like an "horizontal asymptote" to me. I don't know about you chaps, but I'm off to buy a V8! ;o)
  20. Dikran Marsupial at 03:53 AM on 21 January 2011
    Monckton Myth #3: Linear Warming
    NETDR@73 Funnily enough, starting a graph at an unreasonably low level is a common practice for trying to make something look trivial when it isn't, so much so that the practice was lampooned by DenialDepot here. Starting at 0 is clearly absurd as it equates to a concentration of 1ppmv, which is essentially physically impossible. Whether a 3% rise in log(CO2) depends on climate sensitivity, as I have pointed out to you repeatedly. If the climate is sensitive to a change in radiative forcing, then even modest increases can be significant. As you are not connecting radiative forcing and climate sensitivity, you are in no position to know whether it is trivial or not, which is why your arguments are not getting a better reception. At least we have established that you *are* using your own personal definition of the word "asymptote"! For most of us it means a function that is converging to, rather than diverging from a constant value.
  21. It's Pacific Decadal Oscillation
    #61. I agree, except with the "wipe out part". Anyway, back to PDO and ENSO and how they relate. Among other aspects of the ENSO and PDO cycle, I wrote this in one of my earlier comments (#13): "Adding PDO events (warm to cold reversals, vice versa, phase shifts, etc) to the NOI data we instantly see the following: The 2008 la nina coincides exactly with the PDO GPTC The 1998 el nino coincides exactly with the PDO phase shift from warm to cold The 1988 la nina coincides exactly with the highest PDO (LPTC) since 1934 The 1977/78 el nino coincides exactly with PDO phase shift cold to warm The 68/69 la nina coincides exactly with PDO's phase reversal The 55/56 la nina coincides exactly with the lowest PDO value since 1900 In addition, between 1950 and 1977 there were 126 la nina seasons (months) and 75 el nino seasons: PDO was cold Between 1977 and 1998 there were 53 el nino seasons and 27 la nina seasons: PDO was warm." Do we really need much more proof too see that ENSO and PDO are related?
  22. Monckton Myth #3: Linear Warming
    Dikhran Re: My statement that the plot of the log of CO2 looks looks like a horizontal asymptote. Notice that your graph starts at 5.75 and ends at 5.95. If you start the plot at zero it does look like an asymptote with very slight slope. This is a common practice of trying to make a trivial amount of increase appear large. (5.95 - 5.75)/ 5.75 = 3 % in 52 years ! That is if you will excuse the expression "trivial"! In another 90 years it [the effect] will have increased 6 %. That is pretty close to an asymptote.
    Moderator Response: You're still dodging the crucial issue that several people have put to you: Do you claim that the effect of that CO2 increase on temperature will be trivial?
  23. Infographic on where global warming is going
    RE: #22 Ken, thanks to Eric @ #24 who effectively answered it for me. :) The atmosphere isn't a single isothermal 'block' and nor are the oceans. What Eric says seems correct: heat can be transferred between the oceans and atmosphere. That explains why ocean heat content increased in a year when atmospheric temperatures fell, for example. But ENSO also affects the total radiative forcing through changing clouds. A good metric for global warming is total heat, including the oceans, ice etc. Thermodynamics should stop long term divergence in trend signs, but total heat content (being radiative alone) should be less noisy than atmospheric heat content (which is also coupled through latent & sensible heat transfers from the surface).
  24. Anthony G. Warming at 02:56 AM on 21 January 2011
    Infographic on where global warming is going
    25 Sphaerica, I totally agree with your description of the interplay of heat and temperatures. If you read the rest of my comment (other than what you quoted), you will see that I described a long term change towards another equilibrium in the future, other than the one we have today, whereas you describe the day/night cycle with its flows back and forth. I still object to the top post's: "... it takes time for the ocean to release its heat into the atmosphere." In the long term perspective, the ocean will gradually adapt its temperatures to the climate. We don't have to fear a future shock when the ocean will "release its heat". It's just a creeping change of balance that we are facing, and it changes year by year, slowly and continuously. I think 22-Ken Lambert has similar objections: "What is all this about the oceans 'releasing' and 'dumping' heat to warm the atmosphere?"
  25. Infographic on where global warming is going
    There are a lot of good comments above, even the ones that disagree with each other. My take on the discussion so far: The ocean provides enormous thermal buffering. This works in both directions, all the time. You can conceptualise this as the ocean acting as a heat sink at this point, and less of a heat sink as an approximate equilibrium is reached, or as an increased outflow of energy as it gains heat content. It makes little difference since both are true. Couple of points, that may be more or less obvious, apologies for stating the obvious: There will be no equilibrium until some time after the GHGs are stabilized. They won't stop increasing just because they have doubled. So, to talk of an equilibrium at any given level doesn't apply to the reality in which we live, until and unless that reality includes a stabilization of GHGs. Some people treat ENSO and other sloshing around of oceanic water as causes or forcings in and of themselves. They aren't; they are just instabilities in the system attempting to reach an internal thermal equilibrium. The cold water upwellings are driven by salinity and temperature differences, and wind (which is just the same process of entropy acting in the atmosphere). They are ultimately determined by relative energy distributions within the earth system; they don't add or remove energy from the system.
  26. Monckton Myth #3: Linear Warming
    #70 You argument is a clear example of unintentional cherry picking, Having seen BP cherrypick periods like this more than once, and get called on it each time, "unintentional" is not the first word that springs to mind.
  27. apiratelooksat50 at 02:40 AM on 21 January 2011
    Could global warming be caused by natural cycles?
    Muon, What websites do you find acceptable for research that you would direct me toward? Pirate
  28. Infographic on where global warming is going
    23, Anthony,
    The coffee-cup has a higher temperature than the air, and has already a lot of heat to release, thus lowering its temperature. This is not the case with the ocean.
    This is not true. It may seem this way to people who go to the ocean for a swim, where the water seems cold and it is hot on the beach under the sun, but that limited, specific (and anecdotal) environment is very, very different (hot, sunny day, coastal water, etc.) from the global picture. The interplay of land/air/ocean temperatures is complex, but in general... sunlight passes straight through the air and does not heat it much at all. It strikes the ground and some is reflected, while the rest heats the very surface. It strikes the ocean, penetrates and heats it to some small but not inconsequential depth, reflecting very little. At night, the land cools quickly, the oceans not as fast (because of the properties of shallowly heated solid objects versus a great depth of H2O). The upshot of all of this is that the oceans absorb a lot more energy from the sun during the day (since very little is reflected), and also take much longer to transfer that heat ("release it") to the atmosphere. That's how the air gets heated, through heating from both the land and the ocean, day and night -- not from the sun itself, directly. But the ocean's contribution to that heating is dramatically more pronounced than that of the land, and that's the only way that the atmosphere gains heat (which it ultimately loses through radiation out into space). The air is not, on average, day and night, around the globe, warmer than the ocean.
  29. It's Pacific Decadal Oscillation
    thepoodlebites wrote : "I’m expecting to see the UAH globally averaged satellite-based temperature anomaly for Jan. 2011 to be near or below zero, similar to the beginning of 2009. That would effectively wipe out 30+ years of warming in the satellite record. And the Sun is still unusually quiet." So, you're saying that the anomaly you are predicting for Jan 2011 ("near or below zero") will be similar to the "beginning of 2009" (is that Jan 2009 or some/a few/several months ?) - the year before 2010, which UAH list as the 2nd warmest in their records, i.e. warmer than 2009 - and that this will subsequently "wipe out" the UAH positive trend of roughly 0.4C seen over the last 30 years ?
  30. Eric (skeptic) at 01:42 AM on 21 January 2011
    It's Pacific Decadal Oscillation
    thepoodlebites, my prediction is that if "30+ years of warming in the satellite record" is wiped out, then we will also see a significant rise in OHC.
  31. Eric (skeptic) at 01:09 AM on 21 January 2011
    Infographic on where global warming is going
    #22, KL, the oceans will release heat when the SSTs are warmer than the atmosphere. There is no second law argument here since the local SST's in El Nino conditions are much higher than the local atmospheric temperatures. Those large local imbalances are what drives the global net ocean heat release. In ENSO neutral and La Nina, the net balance is for the ocean to absorb more heat. In 1998 there was no "cooling forcings overtaking warming forcings", there was simply a net release of ocean heat and corresponding spike in GAT.
  32. Anthony G. Warming at 00:58 AM on 21 January 2011
    Infographic on where global warming is going
    I agree with 17 Ed Davies. I find the answer (18), and also the original statement in the top post misleading: "Just as it takes time for a cup of coffee to release heat into the air, so to it takes time for the ocean to release its heat into the atmosphere." The coffee-cup has a higher temperature than the air, and has already a lot of heat to release, thus lowering its temperature. This is not the case with the ocean. Even after reading the article at the underlying link in the above quote, I don't think the situation is correctly described. Before humans started adding CO2 en masse to the atmosphere, the oceans were (roughly) in equilibrium with the rest of the Earth (i.e. air, land).--Then AGW started. More (and more) heat stays within the system due to the greenhouse effect. Temperatures are rising. The oceans absorb most of the increasing heat content. As the process goes on, ocean temperatures will rise, they will absorb gradually less heat, and will release gradually more heat, until another equilibrium is reached (provided that there is an upper limit to the new CO2 content). The article gives the impression of an ocean that is currently building up enormous heat content that will later (suddenly?) be released to the atmosphere. That's not how it works. The ocean is both absorbing and releasing heat, all the time. Right now it's lagging behind a bit in temperature, because it takes time to raise the temperature of a billion cubic kilometers of water. Gradually it will catch up, and asymptotically a new equilibrium will be reached, with higher temperatures, and higher levels of heat transfer--both to and from the oceans.
  33. Infographic on where global warming is going
    Original Post and MarkR #16 What is all this about the oceans 'releasing' and 'dumping' heat to warm the atmosphere? Global warming is supposed to be about a positive imbalance in the energy flux at TOA, causing a net energy gain to the biosphere over time. Although there is a small amount of geothermal energy flowing from the ocean bottom upward, surely the predominant flow is from the top down ie. direct radiation and convection from a warmer atmosphere into the oceans where over 90% (93.4% according to above)is absorbed by way of increased temperature via complex circulations. The oceans could only 'release or dump' heat to the atmosphere on a global scale if the positive warming imbalance turned negative which means that cooling forcings overtake warming forcings - which can't happen if CO2GHG forcing and feedbacks do act as claimed by the proponents of AGW.
  34. thepoodlebites at 00:41 AM on 21 January 2011
    It's Pacific Decadal Oscillation
    #54 Correlation is a necessary but not sufficient condition for causality. If you find strong correlation you should investigate to establish a possible relationship. WhatDoWeKnow is correct, the Sun can not respond to changes in the Earth’s oceans or atmosphere, that would be silly. But there is evidence that the oceans respond to changes in the Sun and the atmosphere responds to changes in the ocean. I see the PDO and other cyclical ocean processes (AO, NAO, AMO, ENSO) as heat redistribution systems. Upwelling brings colder water to the surface. And we know that deep water is very cold. El Nino begins when the trade winds weaken, allowing warm water to flow from the western pacific to the eastern pacific. Kelvin waves develop that reflect and propagate both North and South along the North/South American coasts. Even longer term Rossby waves can propagate westward at higher latitudes back towards Japan. I know that there is debate about the relationship between ENSO and PDO but I think they are connected. I see ENSO and the PDO as a transfer of heat from the tropics to higher latitudes. It’s like two steam generators that are connected through a secondary system. The relationship is dynamic, nonlinear and inherently oscillatory. Currently, with the cool phase of the PDO and La Nina working together, we are seeing a cooling response in the atmosphere. I’m expecting to see the UAH globally averaged satellite-based temperature anomaly for Jan. 2011 to be near or below zero, similar to the beginning of 2009. That would effectively wipe out 30+ years of warming in the satellite record. And the Sun is still unusually quiet. That’s my take, have fun tearing it apart.
  35. Monckton Myth #3: Linear Warming
    @Dikran Marsupial: I think you are being overly generous when you say this is "unintentional" cherry-picking on BP's part. BP, you know very well that you can't derive a trend from such a short period of time - so why do it, if not to present a false impression of reality? Please stop your politics interfere with your view of science. Thanks.
  36. It's cooling
    MJ Liberto, to satisfy your curiosity, and in addition to what has already been posted for you, why not also have a look at this page, where you can find the 'It's the Sun' argument and others that are linked to it. And to see how all possible factors are taken into consideration, why not look at Newcomers Start Here, The Big Picture and Skeptic Arguments and what the Science says.
  37. Dikran Marsupial at 00:32 AM on 21 January 2011
    It's cooling
    MJ LIberto@108 The effects of the sun *are* taken into account in modelling global climate. However we have measurements that show that changes in solar activity are too small and in the wrong direction to explan the warming of the last 40 years or so. The IPCC WG1 scientific basis report though attributes much of the warming of the first half of the 20th century to solar activity. Note the number 1 skeptic argument is "It's the sun".
  38. It's cooling
    @MJ: In a nutshell, we know it's not the sun because we can measure Total Solar Irradiance, and it's actually decreasing a little right now. The effects of the sun are, in fact, calculated in the Global Climate Models. May I suggest you read a bit more about the subject on this site before commenting?
  39. Eric (skeptic) at 00:31 AM on 21 January 2011
    Monckton Myth #4: Climate Sensitivity
    #26 MarkR, more generally than clouds, sensitivity will be determined by the water vapor distribution http://wacmos.itc.nl/?q=node/22 WV will determine clouds which will have a large impact on sensitivity, but WV independent of clouds is just as important for determining the net radiative balance.
  40. Infographic on where global warming is going
    1, muoncounter,
    Less than 2% going into ice (Greenland, Arctic, ice caps) gives us the melt rates we've observed??? I'm stunned.
    Realize, I think, that the graphic says that this is the energy that has gone into actual melting, i.e. un-reversed transition of solid ice to liquid water. While the ice melt is dramatic and scary from a human point of view, it doesn't really represent the use of all that much energy to get there. What is more important is that a sizable chunk of the heat from the 93% of heat in the ocean, 2.3% in the atmosphere and 2.1% on the continents is geographically located at the north pole, and is how the heat gets "into position" to eventually melt frightening amounts of ice. I'd love to see this graphic modified to further split the ocean, atmosphere and continent numbers into three for five bands (SH, EQ, NH or else SP, SML, EQ, NML, NP), to show that geographic distribution.
  41. It's cooling
    I am very curious to understand why the effects of the sun are not calculated into the global warming scenario. Our sun is already middle aged and will eventually fry the earth if science does not find a way to distance them. Shouldn't all factors be taken into consideration when looking for an accurate analysis and figures on what is causing the earth and its oceans to warm?
    Moderator Response: In the Search field at the top left of the page, type "It's the sun" without the quote marks.
  42. Monckton Myth #4: Climate Sensitivity
    I believe LC09 accepted they made a mistake in the simple climate sensitivity equation, so their actual estimate was 0.82 K. But still most likely wrong, because they used an open domain and seemingly randomly selected time periods (they happened ot randomly select time periods that gave lower sensitivities). As for clouds, I think the article is right. There are many observational estimates. Dessler & Lauer have observations along with their model (they just looked at more complex models than the traditional sensitivity equation LC09 used). That's looking at cloud feedbacks, like LC09 did. The Knutti & Hegerl paper shows many estimates of sensitivity from the reaction of tempereature to forcing, which is an observational estimate of the ENTIRE sensitivity, and not just individual feedback factors. Also, the only way we know of that could make a low sensitivity is clouds. And we've looked hard for a negative cloud feedback for decades and not found one.
  43. Eric (skeptic) at 23:44 PM on 20 January 2011
    Infographic on where global warming is going
    I think the storage and releasing of heat by the ocean has two components, the long term one is OHC increases to reach equilibrium. However, that rise is smaller than OHC fluctuations due to irregular cycles like ENSO. When ENSO causes large areas of high SSTs, OHC goes down (the ocean is releasing heat) and vice versa. However that idea may be too simplistic. Figure 2 in http://faculty.washington.edu/kessler/abstracts/2002GL015924.pdf shows the SST but also the discharge and recharge measurement which should also affect OHC.
  44. Infographic on where global warming is going
    #1 Do not be amazed that the GIS melt is just 0.2%. Recall that the acceleration of the Greenland glaciers is from changes at the terminus due to thinning. The thinning results in reduced friction and increased calving. The most likely candidate for thinning at the terminus is bottom melting from warmer ocean waters. As noted for Petermann and West Greenland, which brings us back to the largest blue ball that is the one to keep your eye at present even for the ice sheets.
  45. Infographic on where global warming is going
    Ed, The oceans are huge so the total heat content is quite impressive. Heat fluxes are just not able to move this heat out very quickly. All three heat transfers are involved but it appears that latent heat released by condensing water vapor is what provides the air with most of the heat that originated in the ocean. Globally averaged values: Conduction adds 24 watts per square meter to the air Net back radiation warms the air by 66 watts per square meter Heat loss by evaporation is 78 watts per square meter
  46. Dikran Marsupial at 23:17 PM on 20 January 2011
    Monckton Myth #3: Linear Warming
    BP@69 If you look at the data you plot in post 53, you will find there are several such short periods (e.g. 1980-1990) where there is little or no rise (or even a decrease) in OHC, even though this happens in the context of a long term increase in OHC. You argument is a clear example of unintentional cherry picking, focusing on short periods where the natural variability masks the long term warming. It is essentially the same argument as global warming stopped in 1998 etc.
  47. Berényi Péter at 22:55 PM on 20 January 2011
    Monckton Myth #3: Linear Warming
    #54 Marcus at 13:22 PM on 20 January, 2011 Since mid-2007, when all 3,000 buoys were deployed, through to mid-2010 we saw consistent warming. Unfortunately that's either untrue or false. In fact there's no heat accumulation in the system even from mid-2007 to mid-2010. Nothing Nada Nicht Nichego. Semmi. It is the pre-2003 era where people have to look for Trenberth's missing heat when it could easily escape the rather sparse & error prone MBT/XBT measurement network. With ARGO in full swing it is no longer the case.
  48. Monckton Myth #3: Linear Warming
    angusmac@65 You've got better eyes than I do if you can see that from Figure 2. However, a least squares fit from 2000 is showing a trend of between 0.12 and 0.17 per decade (depending on the data set used, and ignoring exogenous factors), which is very different to the "constant CO2 concentrations at year 2000" values that I've been able to find.
  49. Monckton Myth #3: Linear Warming
    Also, Angusmac, methane concentrations in the atmosphere actually leveled out for the first part of the 2000-2010 period, so that also probably had some impact on total warming trends. Unfortunately, all the evidence says that methane levels have begun to rise again (we'd also better pray those clathrates don't melt, or else its "all over, red rover"!)
  50. Monckton Myth #3: Linear Warming
    angusmac, I've got 3 little words for you-deep solar minimum. For the record, warming was only slightly less for 2000-2010 than it was for 1990-2000, so imagine what it will be like when total solar irradiance starts to trend upwards again. Also, you are aware that the period of 2000-2010 on that graph would be the *tiniest* little blip-where currently all 4 scenarios still overlap?

Prev  1950  1951  1952  1953  1954  1955  1956  1957  1958  1959  1960  1961  1962  1963  1964  1965  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us