Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

Recent Comments

Prev  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  Next

Comments 4801 to 4850:

  1. Skeptical Science New Research for Week #2 2022

    "Thank you," Mike. :-P

    That one showed up past deadline, for this week.

    It adds to quite an unusually large litany of "similar & consistent" in this edition #2. 

    Not least, Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century

  2. The 1.5 degrees goal: Beware of unintended consequences

    swampfoxh and Hal

    The additional carbon stored in (human and domestic animal) biomass is part of the modern carbon cyle. It would otherwise exist in another biosphere carbon compartment, such as soil or standing biomass, such as forests.

    It is true, however, that a significant amount of soil and aboveground standing carbon was, and is, on average, transferred to the atmosphere for thousands of years. Yes, it was at times a function of population due to agriculture expansion. Scientists summarize it under the term "land use change" (LUC), and you can read up on that in IPCC reports that discuss the carbon cyle and/or sources of atmospheric CO2 over time. A sumary graph is here:

    https://www.ipcc.ch/report/ar5/wg1/technical-summary/

    Figure TS.4

  3. The 1.5 degrees goal: Beware of unintended consequences

    Swampfox @14 and 15. The suggestion that industrial agriculture is articially manufacturing greenhouses gases has merit. Bear in mind you could argue that the explosion in human population is doing the same. And it its true that we have more humans than previously and perhaps more grazing animals and all expiring greenhouse gases. The issue with all these things is the respiration of both humans and animals is ultimately absorbed by natural carbon sinks through photosynthesis and this is regardless of how animals are farmed. Its a carbon neutral process. So the previous points are moot. Its quite a different thing from buring fossil fuels where emissions are not quickly absorbed by natural sinks.

    The increase in emissions from agriculture relates to transport and processing. For THAT particular reason there is merit in low meat diets, and more natural lower technology forms of farming like regenerative agriculture.

  4. One Planet Only Forever at 03:14 AM on 15 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    Bob @23,

    The lack of certainty of how to design things for the future climate is a serious problem. Not having 'adequate certainty' regarding what needs to be adapted to is the real problem, more so for food production than for things like structures or drainage systems. And a related problem is that the people benefiting from compromising the certainty of future climate conditions face very little potential for personal negative consequences.

    If a designed and built item fails, or other harm is done, there can be legal and image problems for anyone directly involved like the engineer. But the people who push for things to be quicker, less expensive, more harmful or more likely to be harmful (pursuers of maximized personal benefit) can be very hard to penalize.

    Demands for things to be more popular and profitable leads to things being done quicker and cheaper, which leads to pressure for more harmful and riskier things to be done, especially if Others will likely suffer any negative consequences.

    A root of the problem is the lack of effective penalty for people who benefit from harmful activity. Their defence is typically a lack of proof that what they benefit from is unjust or harmful. They also raise doubt about the proof of their harmfulness. They will try to limit the emergence of evidence and improved understanding. They also demand that the "certainty of proof that they are being harmful" must be absolute. And they also raise doubt about being harmful by claiming Others are also, or are more, harmful.

    And in a system governed by public opinion, like the competition for superiority based on popularity and profitability, it can be easy to get support for misunderstanding 'what and who is harmful', especially when there is ample evidence of the ability to get away with benefiting from being more harmful, especially if the benefit is being obtained at the risk of harm to Others.

    A root understanding of ethics is "Do No Harm". Games played to determine who gets to benefit from 'Harm or Risk of Harm Done to Others' are ultimately unsustainable. The popularity and profitability of getting away with being harmful is able to powerfully compromise leadership actions almost everywhere. That type of game playing, or pragmatic or moderate balancing of interests, has no sustainable future. But a lot of harm can be caused before leadership is forced to prioritize effective actions to limit the understandable harm being done.

  5. Skeptical Science New Research for Week #2 2022

    File under “faster than expected.”

    “we detect a sustained pattern of retreat coincident with high melt rates of ungrounded ice, marked by episodes of more rapid retreat. In 2017, Pope Glacier retreated 3.5 km in 3.6 months, or 11.7 km yr–1. In 2016–2018, Smith West retreated at 2 km yr–1 and Kohler at 1.3 km yr–1. While the retreat slowed in 2018–2020, these retreat rates are faster than anticipated by numerical models on yearly timescales. We hypothesize that the rapid retreat is caused by unrepresented, vigorous ice–ocean interactions acting within newly formed cavities at the ice–ocean boundary.”

  6. How weather forecasts can spark a new kind of extreme-event attribution

    wilddouglascounty @ 24:

    It is worth noting that "They changed the name from 'global warming' to 'climate change" is #90 on the SkS list of "Global Warming and Climate Change Myths".

     

  7. wilddouglascounty at 01:26 AM on 15 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    #18 Eclectic,

    Thank you again for your continued discussion, which on the whole has been much more extensive on this thread than I ever expected. I agree that "global warming" and "climate change" have become extremely recognizable in the media and the public around the world, and wanting to replace it with a mouthful of words with nearly the same meaning has questionable merit, so I understand why you are wondering why I want to shift it to what seems to be a subtle point which might be lost on most people. And you may be right.

    But there are a couple of points I want to bring up for consideration. The first point is that do you remember when the phrase "global warming" was first popularized, the denialists got a lot of coverage whenever a greenhouse gas turbocharged polar vortex came barreling down from the arctic? Or when the north Atlantic cooling and salt dilution from all the ice melt from Greenland became a thing, potentially causing colder weather for northern Europe, as another example?  The climatological community quickly realized that "global warming" did not adequately capture the complexity of changes that were occurring as a result of the changing atmospheric chemistry that were being observed. So "climate change" became the new replacement mantra, at least in the US community. This is an example of how popular terms are changeable, and made more accurate, thereby short circuiting misinformation in the process.

    The second point to consider is how the use of steroids has played out in the sporting world.  I've used baseball as an example, but steroid use clearly has had its impact across all sports as is evidenced in the Olympics Committee rules development and the increasingly complex monitoring of athletes across all sports. If the conversation in the sporting community just focused on homerun inflation, or increasing serving speeds in tennis, or other sports specific measures, then it would perhaps be harder to connect the dots to reveal the larger cause: steroid use. As we know, climate science has had to look at the much larger net of causality and relationships that impact and are impacted by the increase in the atmospheric greenhouse gas component. The ocean has increased CO2 absorption rates, resulting in acidification. The oceans themselves, not just the atmosphere, is warming, which contributes to sea level rise. The bottom line is that there are several monitoring indexes that are important to watch to understand the impact of greenhouse gas composition in the atmosphere. So just as the sporting community has focused on steroid use as the source of the myriad changes occurring in the sporting community, it makes sense to me to focusing on the source of ocean acidification, sea level rise relating to ocean water temperature, etc. AND climate change: greenhouse gases. It leaves the conversation about whether humanity is causing the problem behind us so we can move ahead with the next steps.  

    Thanks again for persisting, and I hope that this clarifies why I think it is worth considering this.

  8. How weather forecasts can spark a new kind of extreme-event attribution

    With regard to desiging for weather/climate, this happens at the individual buliding scale (insulation levels, weight-bearing capacity for roof snow loads, solar heating rates to determine A/C capacity, etc.) and at the regional infrastructure scale (road drainage and frost-heave protection, storm sewer capacity, snow-clearing equipment capacity, etc.)

    Getting it wrong can mean relatively manageable issues - higher operating costs (heating, cooling) - or catastrophic failures (roof collapse, bridge collapse, major flooding. loss of life).

    Uncertainty is not our friend, and "that's someone else's problem, in the future" is not a very considerate point of view.

    Overdesign costs money and is rarely noticed as a long-term problem. Underdesign makes the news, does undesirable things to an engineer's liabilty insurance premiums (or career), may end up in court, and may end up forever archived in Youtube videos.

  9. The 1.5 degrees goal: Beware of unintended consequences

    To go on...the authors, Bar-On et al (2018), found that the biomass of humans and livestock combined have increased the total mammalian biomass by a factor of 4...It's not too much of a leap in logic to conclude that, above some minimum livestock population threshold or meat animal product consumption level, additional livestock units need be considered as added sources of GHG emissions akin to any other emissions-producing industrial factor of production.

  10. One Planet Only Forever at 13:23 PM on 14 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    Bob Loblaw @21,

    Indeed, the Canadian Building Codes include regional climate design requirement extremes (like snow, wind, rain, temperatures) based on the Climate Normals and Averages that Environment Canada updates every 10 years (EC has not yet published the 1991-2020 data). And design requirements like the Canadian Building Code are written as if they establish design requirements that will be adequate for the potential extreme weather conditions that would potentially impact a structure or system that is being built to last an established number of years like 50 or 100 years. But the rate of climate change and uncertainties of future climate make a difference to design requirements that is hard to establish.

    What you have pointed out is indeed a challenge for designing things to successfully deal with the potential future climate conditions in any region. The Building Code only establishes “minimum design requirements to be met”. Everyone is free to design for more extreme requirements but, as I mention @16, without knowing how quickly the human impacts causing climate change will ‘change the climate’, and without knowing the expected peak level of impact, it is a bit of a fool’s errand to try to establish a regional design basis that would be sufficient to withstand conditions that may occur in the next 100 years, or even 50 years. Even if the regional climate forecasting could reasonably provide potential climate change results far enough into the future (like 100 years), knowing the peak human impact and how quickly it will be reached is required to establish appropriate design requirements.

    Of course, absurdly severe design conditions could potentially be used. But who will establish what is ‘absurd enough’? And who will choose to impose the absurd requirements on what they ask to have designed and built, with the person making the request paying what it costs to get the result?.

    And, as I mentioned @16, food producers have an even harder challenge attempting to plan their ‘adaptation to rapid human caused climate change’.

    The conundrum of designing Civil and Structural systems for hard to predict (uncertain) rapid human-caused climate changes (and the potential absurdity of requests for that to be done) is what initially sparked my interest in learning more about this issue of “Rapid human caused Global Warming causing significant Climate Changes”.

  11. The 1.5 degrees goal: Beware of unintended consequences

    There is a study, currently in peer review, that approaches some elements of analysis differently than has been published over the last decade or two. This particular one asks the question, "what would we not have if we did not practice industrial animal agriculture?" The total absence of domesticated animals tended as food would see the reduction in methane and CO2 from animal respiration. The philosophical argument is: animal agriculture is a purely human invention, so the CO2 exhaled by livestock is no less unnatural than the CO2 emitted by cars and factories, etc.

  12. The Debunking Handbook 2020: Downloads and Translations

    In December, the Dutch translation of The Debunking Handbook 2020 was published, followed by the Galician translation today.

  13. The 1.5 degrees goal: Beware of unintended consequences

    Hal Kantrud.  This topic of re-carbonizing of the soil is burdened with a wide variety of proposed remedies.  I recommend the Australian soil scientist, Dr. Christine Jones, as a good first source on the subject of carbon and soil. Also, I recommend a close look at the role of plankton, specifically phytoplankton, rather than new grasslands planted in degraded soils, as the way to, effectively, support the natural carbon cycle.  It appears that the human race may not have enough time to re-forest our de-forested lands and, in any case, re-forestation or re-grassing will run into property and legal rights issues which, in places like Brazil, will likely be insurmountable.

  14. The 1.5 degrees goal: Beware of unintended consequences

    I'm pretty sure our moderator tires of the task of referring participants to other threads.  SkepSci has been around a long time, and lots of participants have contributed much to its informations stores.  Hal Kantrud seems to be at a bit of a disadvantage since he is possibly fairly new to Skep/Sci and has not been through the voluminous scientific data regarding the topic of C02 emissions and the particular isotopic types of CO2 which lead us back to the origins of these different carbon dioxide "culprits".  Perhaps new contributors could receive an occasional reference from Skep/Sci on where to browse the "catalog" of threads, etc that permits new participants to get "on board". (??)

    Moderator Response:

    [BL] Let's leave moderation to the moderators - the comments policy does consider moderation issues to be generally off-topic.

    All users are encouraged to use the "Search" function to find suitable threads and information, and the Most Used Climate Myths list is prominent near the top of the left margin.

  15. The 1.5 degrees goal: Beware of unintended consequences

    I certainly did not mean to minimize the contribution of fossil fuel emissions toward the developing climate problem.  It is not an area I spend much time in, anymore, because the science is pretty well "evidenced". But, Industrial Animal Agriculture is flying under the radar and very little dialog exists on the plight of phytoplankton in the ocean, such essential creatures now suffering from ocean acidification.  Dialog, on this site, would contribute much to the big picture. 

  16. How weather forecasts can spark a new kind of extreme-event attribution

    In comment #12, OPOF mentions civil design aspects of dealing with severe weather.

    I'm pretty sure that every jurisdiction with design rules has some that are specific to climate/weather. In Canada, the Meteorological Service publishes "Engineering Climate Datasets".

    There is a limitation to these data sets - they are based on historic data, not future climate.

    If you want to build something today, for use over the next 30, 50, or 100 years, you will have an added burden of determining proper design limits based on future weather.

  17. The 1.5 degrees goal: Beware of unintended consequences

    Hal Kantrud @ 8:

    As Eclectic points out, you need to define your time scales fully.

    Several Skeptical Science posts cover CO2 changes over different time scales:

    The last century or so

    The past 800,00 years

    The last 100 million years (or so)

    Hundreds of millions of years ago

     

  18. The 1.5 degrees goal: Beware of unintended consequences

    Hal Kantrud @8  ~ your meaning does not come through very clearly, at all. Do you mean long term periods as decades, or mega-years?  What are these spikes (plural) that you are referring to?  Clarity of explanation would be most welcome!  Indeed, essential.

    (b)  Thanks once again, Bob  Loblaw.  I have been tinkering with trials of back-and-forth with tabs etcetera - but the website has a strong inclination towards deleting whatever has been typed in the comments box.  (Previously I had naively assumed that the entries inside the comments box were the criterion for "activity".  But your advices make me come to the realization that it would of course be difficult for "offsite" text work within the box to register at SkS site.) 

    Simplest overall: I hope that the Administrator could add 60 minutes or so to the qualifying time recognized by the server.  Would there be some security concern in using a longer time?  Or is it a congestion problem, or something else?

    Moderator Response:

    [BL] Pretty much the only thing I know about the code development is that it is a volunteer process. We'll look at it, but no promises.

    You need to stick to one comment box, in one tab. But that session is linked to timing of other sessions (as far as I can tell), so as long as you are clicking on links or refreshing a different page, your login is active.

    A web site is not an interactive ongoing dialog between server and browser. It's "you ask, I send, I don't know you any more, so next time you ask I have no idea you were here before". Cookies were invented to get around that limitation: "Oh, I gave you a cookie. Now I remember who you are". Much else in terms of modern web page design works around some of that, but in the case of the comments box here, it is still just "you are typing on your computer, and I (the server) know nothing until you click 'submit'".

     

  19. The 1.5 degrees goal: Beware of unintended consequences

    So did burning fuels create most of the greenhouse gas blanket? I would guess there are significant lag times but are there long-term temperature data that generally follow the long-term increase in atmospheric CO2? If they increase together, the recent spikes look small compared to the long term trends.

  20. One Planet Only Forever at 08:07 AM on 13 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    What Bob Loblaw presents in his comment @19 is consistent with the evidence. It is independently verifiable understanding.

    Building on Bob's points, admittedly triggered by him correctly pointing out the annoying claims some people make that the required changes to limit the harm done to the future of humanity (the rapid ending of fossil fuel use and other changes of developed activity) “will hurt the poor today”, there are many other harmful unsustainable developed human activities and unjust claimed excuses for them, not only the ones that can be connected to the harm done by human activity that increases CO2 levels.

    That leads to an understanding based on the evidence (still open to improvement):

    Actions, like attempts to end poverty, that depend on harmful unsustainable activity are not helpful, but will be developed by people who believe they will benefit from their development. And their helpfulness, especially their limiting of harm done, will be limited to what they believe they need to do to avoid personally suffering a lose of perceptions of status. They will continue to benefit from being harmful if they can get away with it. Their 'helpful' actions are harmfully unsustainable regardless of perceptions of helpfulness. Also, developed perceptions of enjoyment or superiority, or the opportunity for continued or increased perceptions of enjoyment and superiority, from understandably harmful developed systems and actions makes it harder to get people to unlearn, and resist liking, beliefs and claims that are developed to excuse harmful unsustainable developments they developed a liking for potentially benefiting from.

  21. The 1.5 degrees goal: Beware of unintended consequences

    (A)  Yes, thanks BL   ~ those are useful tips.

    I hadn't gotten round to using a copy/paste using Word or similar: nor was I aware of the potential of the "html junk" problem.

    My assumption had been that the "time out" was relating to activity within the comment box itself.  But if it's just a matter of refreshing the whole page, then that is easier to deal with.

    Nevertheless, the Alexandrian solution is to extend the qualifying period.

    (B)  As Scaddenp points out, increasing the soil carbon is excellent in many ways.  Like AGW, the soil quality degradation seems a gradual "non-urgent" problem that we really should be tackling seriously.

    Moderator Response:

    [BL] The catch is that typing in the comments box is just filling out a box provided by your browser. It isn't until you click "submit" that your browser posts the text you have typed to the server, and the server has a chance to think "oh, an active session".

    If you refresh the page with the comment box you are working in, the browser tells the server "send me that page again", and the server (which knows nothing about what you typed in the box) will send you an updated page - with another empty comments box again.

    I have been told that if you click "submit" and your comment disappears, you can use the "back" button on your browser to get back to the version of the page with your text in the box. At that point, you could copy the contents, paste elsewhere, log back in, and continue.

    To keep your session active, and keep the contents of your comments box intact, you need to interact with skepticalscience.com using another tab or window. The activity in the other tab will extend the timeout for all tabs/windows connected to skepticalscience.com.

     

  22. The 1.5 degrees goal: Beware of unintended consequences

    Hal, the IPCC report  estimate the contribution from land use change but they have wide error bars. However, carbon from soils has a different isotopic composition from carbon from fossil fuels. The build up of CO2 in the atmosphere is consistant with largely FF source. Some more details here.

    However, increasing soil carbon reserves is a useful (in many ways) mitigation strategy.

  23. The 1.5 degrees goal: Beware of unintended consequences

    Swampfox & Hal Kantrud  ~ yes, I've had a comment, on various occasions, simply disappear when I press the Enter button.

    Almost always, it has happened when I've taken my time to type up a comment.  If say, I'm interrupted during the typing-up . . . or if I've taken my time to arrange and consider/review my wording . . . plus proofreading, etc.

    My impression is (for my case) that it is a "timing-out" problem.  If that's all it is  ~  then I hope the Administrator will consider lengthening the available window.

    Moderator Response:

    [BL]. Yes there is a time limit on logins. If no activity is detected, you are automatically logged out. Typing in the comments box does not seem to be considered "activity".

    If this is what is happening, you will find that your typed comment has disappeared and you are no longer logged in after you click "submit".

    I do not know what the time limit is, but  I can try to find out.

    As a workaround to prevent the problem, there are a few choices:

    1. Open a second tab with a Skeptical Science page in it. You will see that you are already logged in. Periodically refresh that page (or click to another Skeptical Science page) and your session will stay active.
    2. Prepare long comments in a text editor, and then paste them into the comment box when you are ready for final editing. Avoid a word processor, as they tend to include a lot of html junk that is hidden from you in the copy/paste process.
    3. Before clicking submit, select all the text in the comment box, and copy/paste it into a word processoor text editor. If the "submit" fails, at least you don't have to start over.

     

  24. The 1.5 degrees goal: Beware of unintended consequences

    Did we not create the greenhouse gas blanket by mining the soil for carbon during the last ten millennia, mostly from the perennial grasslands, the old "land of milk and honey"? I think a strong case can be made that the post-Industrial Revolution spike in atmospheric carbon dioxide resulted as much or more from the conversion of the New World grasslands to cropland and pasture than to the energy sources used for that effort. After all, in many areas, the plows were pulled by humans, then animals, then wood and coal for the steam engines, and only recently by petroleum.

    We transferred most of the carbon to the oceans, rivers, and wetlands, so perhaps we should begin a retrieval effort to begin rebuilding soil carbon. Since we still rely on carbon remaining in the former perennial grasslands to feed ourselves, perhaps we should consider planting perennial grasses in areas where carbon has been most severely depleted such as former forests, shrublands, and deserts. Planting trees and injecting carbon deep underground makes little sense to me

  25. The 1.5 degrees goal: Beware of unintended consequences

    Hal Kantrud....happens to me, occasionally...don't know why.

  26. The 1.5 degrees goal: Beware of unintended consequences

    The authors point to "...existing energy producing systems and capital stock", which are only half the problem.  The other half of the TWO LEADING PROBLEMS of GHG emissions is Industrial Animal Agriculture.  These authors are silent on this topic (?)  Further, GGEs should occupy only a small space alloted to the topic of environmental/ecological damage. Deforestation, desertification, excess fresh water useage, wildlife habitat destruction/extinction, widespread land use conversions for the support of animal agriculture, eutrophication of fresh and saltwaters, human diseases connected to domestic livestock, herbicides, pesticides, chemical fertilizers...overfishing...an exceedingly long list of eco-distructive activities and behaviors that may not materially affect the quantity of GGEs in the atmosphere, but even at 270 or 350ppm, (now long gone) would dangerously affect the future welfare of living things...especially humans.    

  27. The 1.5 degrees goal: Beware of unintended consequences

    dammit had a comment typed in and it disappeared.  Don't know what I did wrong.

  28. How weather forecasts can spark a new kind of extreme-event attribution

    The problem I have with the "it's not climate change, it's greenhouse gases" narrative is that the chain of causality never ends. And at each step of the chain, the contrarians will come up with an excuse to ignore it.

    After "it's greenhouse gases", the contrarians wll come up with one of the following bogus arguments:

    Once you successfully argue that it is CO2, then you get

    and then if you manage to establish that the rise in CO2 is due to burning fossil fuels, you get all the "it's not bad", "technology will save us", "you'll hurt the poor", etc arguments.

    There are many such arguments on the Skeptical Science "Arguments" page. I have only linked to a few.

  29. How weather forecasts can spark a new kind of extreme-event attribution

    Wilddouglascounty, thanks for your comment.  No, I wasn't wishing in any way to imply that the current rapid global warming has a component of raised TSI ~ the evidence is quite clear that it doesn't.

    I was interested in how you would choose to discuss the "attribution" of weather events, when talking with a layman ( 99% of the population - including politicians).   You seem keen to use the phrasing which specifies the underlying cause ( CO2/greenhouse).   Fair enough, mentioned once in a conversation.  Yet I suspect your audience would soon tire of the repetition of a six-word phrase, when the two-word phrase ("global warming" or even vaguer: "climate change") conveys essentially the same message.

    "Global warming" and "climate change" are terms now bandied about, throughout the media, and very frequently.  People are used to hearing it, as a concept.  Apart from Denialists, and people who are simply not interested in the topic ~ most people will know what you are talking about (and know the cause, as specified by scientists & science reporters).   And that is why I am unclear why you wish to make use of "a distinction without a difference".  Or perhaps better described as  ~ a distinction which is unimportant to the man in the street.

    That is where I am missing the subtlety of your message here.

  30. wilddouglascounty at 15:05 PM on 12 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    15 Eclectic:

    Global warming is a measurement that tracks one effect of an increased amount of greenhouse gases present in the atmosphere. The reason it is always important to take causality back to greenhouse gases is for the same reason we take the cause of an enhanced performance back to the ingested steroids instead of attributing that enhanced performance to the improved statistics that that performer has now.

    If it were increased solar activity that was warming the planet say 1.5 degrees Celsius, you would have to look at the physics of the increased radiative output of the sun, just we look at the physics of increased heat retention provided by greenhouse gases, and calculate how the sun, not greenhouse gases or other components of the energy balance created the net increase.

    We know quite a bit about the physics of solar irradiation and its warming component in the energy balance equation, just as we know quite a bit about the physics of greenhouse gas heat retention in that same equation, right? Both could cause the exact same amount of global warming, but the physics of both, being different and testable, are distinguishable, which is why we have concluded that the GW should have an "A" in front of it, not an "S" right?

  31. From the eMail Bag: the Beer-Lambert Law and CO2 Concentrations

    The original emailer has sent in a follow-up to the Skeptical Science contact page, asking about black-body radiation and differences between emissions at 255K and 288K. A temperature of 255K is the commonly-cited radiative temperature at which the earth-atmosphere system emits IR radiation to space, while 288K is the commonly-cited global mean temperature for the earth's surface. The difference is a measure of the role of the atmosphere - the greenhouse effect - and this difference is predicted to continue to rise as atmospheric greenhouse gases continue to increase.

    The blog post focuses on atmospheric absorption, not emission, but atmospheric absorption by CO2 is a key factor in the greenhouse effect. So, how might that temperature difference - 288K at the surface, 255K at high altitude - affect this process?

    A few of the comments to the post touch on aspects of IR emission, and in figure 2 and comment #10 I mentioned Planck's Law, which governs radiation emission. Figure 2 was intended to show the difference between solar (5800K) and terrestrial (255K) sources of radiation, but does not touch on differences for the range of temperatures within the earth-atmosphere system. The recent follow-up email asked to see Planck curves for 255K and 288K (and to see them on a linear scale), so here is that graph:

    Planck curves for 255K and 288K

    The horizontal axis is wavelength in μm, and the vertical axis is energy in W/m2/μm.

    There are three obvious features:

    • At the hotter temperature, the area under the curve is much larger. This area represents the total energy emitted. Hotter sources emit more energy overall.
    • At the hotter temperature, the peak happens at a slightly shorter wavelength. Hotter sources shift a larger proportion of their emissions to shorter wavelengths.
    • The 288K curve always lies above the 255K curve, so even at a specific wavelength, the hotter source emits more radiation than the cooler source.

    The "hotter source" explains why I used a logarithm scale in figure 2. The sun emits a lot more energy than the earth. There is also one more "feature" to figure 2: I scaled the solar output so that instead of giving the intensity at the surface of the sun, where it is emitted, I scaled it down to the value appropriate at the earth's orbit around the sun. That was the only way to get the two lines to graph anywhere close to each other.

    So, if we look back at our discussion of the Beer-Lambert Law, what difference does the source temperature have on the absorption of IR radiation? (The original email had mentioned 15 μm, which we see is a little to the right of the peak in the above graph.)

    Well, it turns out that the temperature of the source has absolutely no effect whatsoever on the absorption according to the Beer-Lambert Law.

    • In the blog post, note that the equations for the Beer-Lambert Law do not have temperature in them.
    • You can add a subscript to the Beer-Lambert Law to indicate wavelength, as the absorption coefficent is highly-dependent on wavelength, but it does not matter what temperature the source was at that emitted the radiation.
    • It also does not matter what the temperature is at the location the absorbing is happening.

    Why is this? Well, there are several factors:

    • The Beer-Lambert Law just tells us the probability that a single photon will be absorbed.
    • Each individual photon is either absorbed, or not. Do, or do not. There is no try.
    • If the photon is absorbed, all the energy goes into the molecule that does the absorbing (and is then transferred to heat all gases through molecular collision).
    • If the photon is not absorbed, then the photon will continue along its way, and be transmitted through the atmosphere.
    • An absorption coefficient of 0.01 means that there is a 1% chance that a single photon will be absorbed. It does not mean that each photon loses 1% of its energy - it means that 1% of all the photons lose 100% of their energy and the oher 99% lose none.

    And all 15 μm photons are the same.

    • They travel at the same speed, and they contain the same amount of energy.
    • They do not contain more energy if they were emitted from a source at 288K than if they were emitted from a source at 255K.
    • The source at 288K that is emitting more total energy at 15 μm is not emitting higher-energy 15 μm photons, it is just emitting more of them.
    • The difference between the two curves in the graph above is just that a 288K source emits more photons at all wavelengths, compared to the 255K source. The 288K source can do this because it has more energy (it's hotter!) that can be transformed into radiation.

    When CO2 absorbs a 15 μm photon in the atmosphere, it has no way of knowing if that photon was emtited from the surface at 288K, a kilometre away at 270K, or a metre away at 255K. It is just another 15 μm photon carrying the same amount of energy that every other 15 μm photon carries. And that amount of energy just happens to fit nicely into the different energy states that CO2 likes, so it is easy for CO2 to absorb it.

    So, the CO2 will absorb the photon, and that heat is added to the local atmosphere, and it does not matter if the location where it is absorbed is warmer or colder than where the photon was emitted.

  32. One Planet Only Forever at 02:33 AM on 12 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    Because of the perspective I presented @12 I appreciate that the ways that the changes of climate will affect developed food production are more significant concerns regarding the attribution of human causes to climate change.

    Every regional developed food production system is at risk, and needs to attempt to adapt to the changes if the regional climate changes (with no guarantees that the climate changes will support continued food production). And the more significant, and more rapidly, the regional climate changes occur the more harm is done to the global developed food production system. Sustainable total global food production, and systems developed to ensure that every human gets at least basic decent nutrition, is the measure that matters. The studies I have seen indicate that, globally, any regional positives of global warming are outweighed by regional negatives. And until the human impacts causing rapid climate change are actually ended, or are clearly on track to being ended, it is hard to know what future climate conditions food producers and distributors will need to try to adapt to.

    Not knowing if the peak climate impact will be 1.5C, 2.0C, 2.5C, 3.0C, 3.5C means there is no way to plan new developments or revise existing developments for the demands of the future. But what is known is that the future of humanity is more damaged by more warming.

    Attribution of climate change impacts to actual events that are seen to be harmful is essential to help convince the fence-sitting pragmatic moderates that it is harmful to compromise or ‘balance’ the understanding of the need to end harm done by human pursuits of benefit with the desires of people who want to benefit from continuing or expanding understandably harmful unsustainable actions.

  33. How weather forecasts can spark a new kind of extreme-event attribution

    Wilddouglascounty  ~  so far in this discussion, my mind has not been subtle enough to discern the effect of the distinction, or difference, that you draw between the concept of global warming vs increased greenhouse gasses in the atmosphere.

    To clarify your position: how would you describe the distinction (regarding increase in extreme weather events) in the - strictly hypothetical - case that the current rapid global warming were instead being caused by an ongoing rise in total solar irradiation?

    Admittedly there is the crucial difference that such global warming would be beyond direct human intervention in its causation ~ but otherwise the nett effects would mimic AGW.   But how would one (i.e. you) draw distinctions in the wording of attribution?  And why so?

  34. wilddouglascounty at 02:23 AM on 11 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    #11 David Kirtley,

    Thank you for referring me to the Grist post, which I had not read before. Yes, Mr. Roberts accurately captures the inherent difficulties in trying to create causal distinctions between different parts of one atmosphere. The point I was making can best be outlined in his article by quoting his steroid example: 

    "When the public asks, “Did climate change cause this?” they are asking a confused question. It’s like asking, “Did steroids cause the home run Barry Bonds hit on May 12, 2006?” There’s no way to know whether Bonds would have hit the home run without steroids. But who cares? Steroids mean more home runs. That’s what matters."

    I just wish Mr. Roberts had gone on to say that while "climate change" is  a compilation or measure of the severity and frequency of weather episodes, it is greenhouse gases in the atmosphere that are causing it to change. It is best to say that increased greenhouse gases mean more extreme weather events. That's what matters.

  35. How weather forecasts can spark a new kind of extreme-event attribution

    There are some people that suggest that saying "climate change is causing changes in the severity of the weather" is a misnomer, because climate change is in fact changes in the severity of the weather (eg: more intense or frequent droughts or storms).

    They say we should really say that global warming or increasing greenhouse gas concentrations are causing changes in the weather. I think its all a bit pedantic. I don't think anyone is really confused as to what is causing changes in the weather. OPOF's comment seems more pertinent.

  36. One Planet Only Forever at 09:56 AM on 9 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    As a civil/structural engineer I have a different perspective regarding the debate about the merits of attribution analysis of extreme weather.

    Civil designs, especially water run-off collection systems, and structures need to be designed to withstand 'weather extremes'. The rapid changes of weather extremes due to human action causing global warming and resulting climate change is critically important work.

    It is inevitable that more frequent and more severe extreme events will be attributed to the human impacts. We have to hope that our designed systems are designed to perform successfully under the more extreme conditions, and fix already built stuff that isn't up to the challenge because it wasn't anticipated to need to be.

    The science that anticipates the attribution of more extreme weather impacts is critical to the success/survival of what we build.

  37. How weather forecasts can spark a new kind of extreme-event attribution

    If I can butt in, hopefully without adding more confusion, I think what wilddouglascounty is saying is something that Dave Roberts said 10 years ago in a Grist post about the "semantic debate" involved whenever the issue of climate change attribution comes up. He even uses the example of steroids in baseball causing more home runs. I think this paragraph probably sums up wilddouglascounty's viewpoint:

    There is no division, in the physical world, between “climate change storms” and “non-climate change storms.” Climate change is not an exogenous force acting on the atmosphere. There is only the atmosphere, changing. Everything that happens in a changed atmosphere is “caused” by the atmosphere, even if it’s within the range of historical variability. Climate change is just the term we use to describe those changes.

    Wilddouglascounty, please correct me if I am putting words in your mouth.

  38. wilddouglascounty at 05:46 AM on 8 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    I posted earlier, but it did not show up, so am briefly posting one more time: In a nutshell, I have no objections whatsoever with any of the terms: climate, climate change and Anthropogenic Global Warming. I fully support them as valid concepts and useful measures of the impacts that have resulted from increasing the amount of greenhouse gases residing in our atmosphere.

    My one and only point is that those composite measures are statistical abstractions that measure the impact of greenhouse gases, and there is a tendency to reify them by saying that the measures are causing the observed changes, when it in actuality is the greenhouse gas composition of the atmosphere that is the causal force. So for clarity's sake it is much better to refer to greenhouse gases as the reason that a storm event is more severe and occurring more frequently, not the tool of measurement, i.e. "climate change."  If you want to attribute the increased frequency and increased amount of energy, I think it is worth pointing to the fact that there has been an increase of 47% in the composite greenhouse gas index since 1990 (AGGI index increasing to 1.47 since 1990) as the cause for the observed phenonenon.  I hope this clarifies this once and for all, but feel free to agree/disagree/clarify as you see fit.

  39. How weather forecasts can spark a new kind of extreme-event attribution

    wilddouglascounty @8,

    This interchange becomes perplexing.

    I expressed the situation as I saw it @7 saying "I feel you are still attempting to paper over the idea that extreme weather will be worse under AGW and that will bring with it serious problems for humanity," believing you were happy that AGW resulted from increased GHGs in the atmosphere but that you had objection to the "statistical abstration" involved with the assessment of AGWs influence on extreme weather events.

    But @8 you say I am wrong in this interpretation of your position.

    It appears now that you are attempting to paper over the concept of "climate change" or AGW as you want the term "climate change" replaced by the rather lengthy phrase "a 40% increase in CO2 in the atmosphere or whatever mix of all greenhouse gases you want to choose." You even @8 describe "climate change" as being a"statistical construct we've created to monitor the impact of greenhouse gases" while @4 it is "climate"  you describe as being "a statistical abstraction."

    So is it simply use of the terms "climate change" and "AGW" or even use of the term "climate" you are objecting to? And I would find an affirmative response "perplexing" given your opening line @1 and your final line @8.

  40. The Conspiracy Theory Handbook: Downloads and translations

    The Conspiracy Theory Handbook is now also available in Swedish as the 14th translation!

  41. wilddouglascounty at 08:19 AM on 6 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    MA Rodger,

    Thanks so much for voicing your concerns, which I can assure you are completely unfounded.  You say you feel that I am attempting to paper over the idea that extreme weather will be worse with AGW and cause increasing problems for humanity, but your concerns are completely unfounded. Nowhere do I imply this and I'm sorry you draw this conclusion from my stating and restating that my concern is that people are being inaccurate by saying that the statistical construct we've created to monitor the impact of greenhouse gases, i.e. "climate change" is CAUSING the observed changes (more severe, frequent extreme weather events, sea level rise, acidification, etc.). It is the greenhouse gases that are CAUSING the climate to change, the rising sea levels, the acidification, etc. Climate change is merely a constructed indicator that we use to communicate the impact of increased greenhouse gases in the atmosphere (and oceans, for acidification's sake). The only way to reduce and reverse AGW is to reduce the greenhouse gases being emitted to a level that the carbon sinks on our planet can absorb in order to return to an equilibrium that results in a climate we have become accustomed to.

    In other words, when talking about attribution, instead of saying that a drought's severity is increased X percent due to climate change, I would like to see folks say that the drought's severity is increased X percent due to a 40% increase in CO2 in the atmosphere or whatever mix of all greenhouse gases you want to choose.

  42. How weather forecasts can spark a new kind of extreme-event attribution

    wilddouglascounty @4,
    Thank you for the added clarity but I feel you are still attempting to paper over the idea that extreme weather will be worse under AGW and that will bring with it serious problems for humanity. (Of course, the sporting analogy breaks down here.)

    You appear to be saying that the science should restrict itself to study of the physics of "the roll of greenhouse gases in changing the atmospheric chemistry and its heat retention properties." You say "science should be focusing more on the physical impact of greenhouse gases than on what fraction of an event can be attributed to climate change."

    So AGW should be understood soley as, what, causing an increase in average global surface temperature of a degree or so, or more? Or perhaps even global averages are too statistical to have any meaning in the real world where AGW can even result in regional cooling. And sea level rise too. That may seen a solid physics thing but outside a few amphidromic points it is still dwarfed by the tidal range and requires weather to drive tidal surges.

    Weather is a series of events and climate is a measure of what weather events can be expected. The science of climatology attempts to unravel the whats and the whys of weather stuff that together comprise climate. If climate changes so will the weather we can expect.
    Yet you appear to be wanting to ignore the impacts of AGW, of say, 100-year events happening every year (on average) and even unprecidented 10,000-year events potentially now happening because it is not CO2 that directly causes these events as they are caused more correctly due to the effect of the atmospheric warming resulting from higher CO2 concentrations which in turn cause, say, on average deeper cyclones at higher latitudes which in turn occasionally drives far greater volumes of atmospheric H2O to suddenly rain-out over places where it will cause flash flooding that destroys buildings and forests and communities that have been happily standing for centuries and which would be a complete disaster if there happens to be an 'r' in the month; all of which is a "statistical abstration" which we shouldn't be bothering ourselves with.

  43. How weather forecasts can spark a new kind of extreme-event attribution

    The way I think of it is that a "weather event" is not really a single item. A heat wave is a higher-than-something temperature, and it carries with it an area of coverage and a length of time. It can be unusual or unexpected if it exceeds previous high temperatures, or if it covers a larger area than normal, or lasts longer than normal.

    And "normal" itself has a geographical characteristic - temperatures that are normal in one place (and one time of year) may not be "normal" in another location or time of year.

    All components of that "heat wave" may be subject to the effects of a globally warmer climate. "Attribution" needs to look at all aspects of that "event", and assess the probability that it would have happened in a climate that has not warmed.

    For a simpler example, what about flooding? Let's say that a region has planned and built for river flooding up to 10 m above normal water levels. This has protected the region for decades, but then under a warmer climate there is heavier rainfall, and an 11 m flood overtops the protection and the region is flooded.

    We can ask, "which metre of flood water caused the protection to fail? There are several possible answers, all of which could be argued with at least some success:

    • The obvious answer is "all of them". Take away any single metre of flood water, and we're back to only 10m and the protection works.
    • The next obvious answer is "the last one". The first 10m did not cause a problem, it was only the last one.
      • The first problem with this answer is that you then have to ask "which factor caused that last metre of flood water?". Which means needing to determine the source of all of the metres of flood, from the first to the last. Which gets you back to "what caused 11 m of flooding?"
      • The second problem with that answer is that the last metre would not have overtopped the protection if any the previous 10 metres of flood had not already happened. Why should it get the blame?
    • So, finally, we get to another possible answer: the flood was caused by the 1 metre of flood water that was never there before. It does not matter if it was the first metre during that event, somewhere in the middle of the event, or the last metre added to the flood water during that event. In the past, there was one factor that was not present, and all the other factors that have been around for ages never managed to exceed 10 m. The problem was caused when the new kid on the block added another metre of flood water to the mix.

    So, in this case, I think we can safely say that the 11 m flood was the result of climate change (precipitation in the thought experiment). But we still need to accept that something unusual might have happened without climate change, so the attribution is done on the basis of probabilities. We're 99% sure that the flood would not have happened if it were not for climate change.

    ...and I think that an essential part of the climate change message is pointing out that we are already seeing the effects. It is not a feature of the imagined future - it is now.

  44. How weather forecasts can spark a new kind of extreme-event attribution

    I think I see the point wilddouglas country is making about attribution studies. Its something I have also wondered about. The term attribition is defined in online dictionaries as "the action of regarding something as being caused by a person or thing." However climate attribution studies do not really say that specific weather events are caused by a warming climate. They typically find that the event is exceedingly unlikely to have happened but for climate change. Not questioning this finding, but the term attribution just doesn't seem accurate. Climate influence studies would be more accurate.

  45. 2021 SkS Weekly Climate Change & Global Warming News Roundup #53

    CelesteRosemary @ 1 & Jonas @2

    Thanks for your feedback! Putting together the weekly summary doesn't take long so my question was just to satisfy my curiosity and not to find reasons to discontinue posting it.

    As our SkS page on Facebook is public and as our posts there are shared publicly, they can be read without an acount (or being logged in).

  46. wilddouglascounty at 02:54 AM on 5 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    Phillipe, MA Roger,

    Sorry for not being more clear: what I am saying is that just as the conversation in athletics is about how steroid use impacts the batting average/number of sixes, instead of focusing on the nonsensical statement that that last hit can be attributed to an increased batting average, science should be focusing more on the physical impact of greenhouse gases than on what fraction of an event can be attributed to "climate change."

    Climate is a statistical abstraction that can be summarized in all kinds of ways, whereas the roll of greenhouse gases in changing the atmospheric chemistry and its heat retention properties is a physical process that can be addressed by science. In other words "climate change" does not CAUSE more extreme weather events: a changed atmospheric chemistry does, and climate indicators are proof of those impacts CAUSED by greenhouse gases. Hope this helps.

  47. How weather forecasts can spark a new kind of extreme-event attribution

    wilddouglascounty @1,

    I'm not familiar enough with the game of baseball to discuss a "last individual baseball hit" but if this were the game of cricket, the analogy of an increased incidence of extreme weather would perhaps be analogous to a batsman hitting more sixes which would be a contribution to an overall increase in the steroid-taking batsman's batting average, the overall increase being analogous to the changing climate.

    So in the analogy we can see the batting average increasing with the steroid-taking and we can see within that performance, the rise in the number of almost-sixes, the rise in actual sixes and the times now in which the ball sails clean out of the stadium. A statisitcal assessment can thus be made.

    Note that your posed question "Did the increased batting average cause the (baseball) player to hit that ball further, or was it the steroids?" was answered by you within your analogy as you say "Now it is the steroids which caused the change, just as a jump in the amount of greenhouses in the atmosphere has caused an increase in extreme weather events that cumulatively changes the climate, right?"

  48. 2021 SkS Weekly Climate Change & Global Warming News Roundup #53

    Happy new year Baerbel and whole SkS Team.

    I usually (partially) read 7-10 of the linked articles but I also profit from the headlines (I would read more if I were not already reading too much stuff; for the research list, the fraction I read is much smaller and the overview thing more important: I am a lay person and research articles often are hard or completely undigestable ..).

    I don't have an FB account, but I just checked that I can read there (was that different in the past?). I now hate FB even more since a member of my familiy became victim of corona misinformation on FB, but I will go there and check SkS there if posting the links here is too much effort.

    Thanks for all you do. I remember how glad I was, when I found this website, way back in  .. 2008? (don't remember ..): I can't count how often I passed and still pass the link to SkS, just recently to two colleagues.

    Utopian greetings,
    Jonas

  49. Philippe Chantreau at 08:00 AM on 4 January 2022
    How weather forecasts can spark a new kind of extreme-event attribution

    WDC, you're splitting hair.

    It is a little ironic, since another, even more intense, winter heatwave has just hit Western Europe again.

     

    A warming climate is predicted to lead to an increased frequency of extreme weather events. The climate is warming, and an increased frequency of extreme weather events is observed.

    Going into the subtleties of: "this event was x times more likely to reach the extent that it did in a warming climate, but can not definitely be said to have done so because of it," may have merit, but is beyond the comprehension of the vast majority of the general public, who have no concept about differential probabilities. They can hardly even wrap their mind around probabilities at all, and are stunted in their quantitative thinking in general, as has been showed by the recent waves of denial and incomprehension associated with the pandemic. 

    Meanwhile, there is this: https://www.ncdc.noaa.gov/billions/time-series

  50. Patrick Michaels: Cato's Climate Expert Has History Of Getting It Wrong

    Pat has officially lost this bet. He is ignoring me. He owes the Climate Scientist Legal Defense Fund $250.

Prev  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  Next



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us