Climate Science Glossary

Term Lookup

Enter a term in the search box to find its definition.

Settings

Use the controls in the far right panel to increase or decrease the number of terms automatically displayed (or to completely turn that feature off).

Term Lookup

Settings


All IPCC definitions taken from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Annex I, Glossary, pp. 941-954. Cambridge University Press.

Home Arguments Software Resources Comments The Consensus Project Translations About Support

Bluesky Facebook LinkedIn Mastodon MeWe

Twitter YouTube RSS Posts RSS Comments Email Subscribe


Climate's changed before
It's the sun
It's not bad
There is no consensus
It's cooling
Models are unreliable
Temp record is unreliable
Animals and plants can adapt
It hasn't warmed since 1998
Antarctica is gaining ice
View All Arguments...



Username
Password
New? Register here
Forgot your password?

Latest Posts

Archives

CO2 lags temperature - what does it mean?

What the science says...

Select a level... Basic Intermediate Advanced

CO2 didn't initiate warming from past ice ages but it did amplify the warming.  In fact, about 90% of the global warming followed the CO2 increase.

Climate Myth...

CO2 lags temperature

"An article in Science magazine illustrated that a rise in carbon dioxide did not precede a rise in temperatures, but actually lagged behind temperature rises by 200 to 1000 years.  A rise in carbon dioxide levels could not have caused a rise in temperature if it followed the temperature." (Joe Barton, US House of Representatives (Texas) 1985-2019) - Full Statement

At a glance

Antarctic ice-core data today provide a continuous record on temperature and atmospheric composition that goes back for some 800,000 years. The data track the last few glacial periods and their abrupt endings, with rapid transitions into mild interglacials. But in some of the ice-cores, temperature rises first and is followed, a few hundred years later, by rising carbon dioxide (CO2) levels.

Certain purveyors of climate-myths seized on this observation, claiming it to be “proof” that carbon dioxide doesn't cause climate change. Wrong, wrong, wrong. But how? The answer lies in a beer-can.

In fact, you can do this one yourself. You need two cans of any fizzy beer. On a nice summer's day, take one out of the fridge and place it outside in direct sunshine for a few hours. Leave the other where it is. Then open the two at the same time. The warm one will froth like mad, half-emptying the can and making a mess. What is left in the can will be horrible and flat. Conversely, the one straight from the fridge will just give a “pfft” noise and will be pleasant to drink, being cool and fizzy.

What's that got to do with this myth? Well, you have just demonstrated an important point about the solubility of CO2 in water. CO2 gives fizzy drinks their fizz and it is far more soluble in colder water. As the water warms, it cannot hold onto as much CO2 and it starts to degas. Hence that flat lager.

Exactly the same principle applies to the oceans. When global warming is initiated, both land and the oceans start to warm up. On land, permafrost starts to thaw out, over vast areas. Carbon dioxide (and methane) are released, having been trapped in that permafrost deep-freeze for thousands of years. At sea, that “warm beer effect” kicks in. Thanks to both processes, atmospheric CO2 levels rise in earnest, amplifying and maintaining the warmth. That rise in CO2 thereby caused more of the gas to be released, warming things up yet more in a vicious cycle, known as a positive feedback. Other feedbacks kick in too: for example as the ice-sheets shrink, their ability to reflect Solar energy back out to space likewise decreases, so that heat is instead absorbed by Earth’s surface.

The trigger for the initial warming at the end of an ice-age is a favourable combination of cyclic patterns in Earth's orbit around the Sun, leading to a significant increase in the solar energy received by Earth's Northern Hemisphere. That's no secret. Glacial-interglacial transitions are caused by several factors working in combination – triggers and feedbacks. We've understood that for a long time.

And when you think about it, saying CO2 lagged temperature during glacial-interglacial transitions so cannot possibly be causing modern warming is a bit like saying, “chickens do not lay eggs, because they have been observed to hatch from them".

Please use this form to provide feedback about this new "At a glance" section. Read a more technical version below or dig deeper via the tabs above!


Further details

That CO2 can lag behind but amplify temperature during a glacial-interglacial transition was in fact predicted as long ago as 1990. In the paper The Ice-Core Record: Climate Sensitivity and Future Greenhouse Warming by Claude Lorius and colleagues published in the journal Nature in 1990, a key passage reads:

"The discovery of significant changes in climate forcing linked with the composition of the atmosphere has led to the idea that changes in the CO2 and CH4 content have played a significant part in the glacial-interglacial climate changes by amplifying, together with the growth and decay of the Northern Hemisphere ice sheets, the relatively weak orbital forcing and by constituting a link between the Northern and Southern Hemisphere climates."

This was published over a decade before ice core records were accurate enough to confirm a CO2 lag. We now know that CO2 did not initiate the warming from past ice ages but it did amplify the warming. In fact, about 90% of the global warming followed the CO2 increase.

Antarctic ice cores reveal an interesting story, now going back for around 800,000 years. During this period, changes in CO2 levels tend to follow changes in temperatures by about 600 to 1000 years, as illustrated in Figure 1 below. This has led some to disingenuously claim that CO2 simply cannot be responsible for the current global warming. Unsurprisingly, such a claim does not tell the whole story.

Figure 1: Vostok ice core records for carbon dioxide concentration and temperature change.

The initial change in temperature as an ice-age comes to an end is triggered by cyclic changes in Earth’s orbit around the sun, affecting the amount of seasonal sunlight reaching Earth’s surface in the Northern Hemisphere. The cycles are lengthy: all of them take tens of thousands of years to complete.As both land and oceans start to warm up, they both release large amounts of CO2 into the atmosphere, from melting permafrost and from warming ocean water, since CO2 solubility in water is greater in cold conditions. That release enhances the greenhouse effect, amplifying the warming trend and leading to yet more CO2 being degassed. In other words, increasing CO2 levels become both the cause and effect of further warming. Once started, it’s a vicious, self-reinforcing cycle - an excellent example of what science refers to as a positive climate feedback.

Indeed, such positive feedbacks are necessary to complete the shifts from glacial to interglacial conditions, since the effect of orbital changes alone are too weak to fully drive such variations. Additional positive feedbacks which play an important role in this process include other greenhouse gases like methane - you may have seen videos of that gas bubbling up through icy lakes in permafrost country and being ignited. Changes in ice sheet cover and vegetation patterns determine the amount of Solar energy getting absorbed by Earth’s surface or being reflected back out to space: decrease an ice-sheet’s area and warming will thereby increase.

The detailed mechanisms for the above general pattern have of course been investigated. In a 2012 study, published in the journal Nature (Shakun et al. 2012), Jeremy Shakun and colleagues looked at global temperature changes at the commencement of the last glacial-interglacial transition. This work added a lot of vital detail to our understanding of the CO2-temperature change relationship. They found that:

1) The Earth's orbital cycles triggered warming in the Arctic approximately 19,000 years ago, causing large amounts of ice to melt, flooding the oceans with fresh water.

2) This influx of fresh water then disrupted ocean current circulation, in turn causing a seesawing of heat between the hemispheres.

3) The Southern Hemisphere and its oceans warmed first, starting about 18,000 years ago. As the Southern Ocean warms, the solubility of CO2 in water falls. This causes the oceans to give up more CO2, releasing it into the atmosphere.

4) Finally, CO2 levels may lag temperature in some ice-core records from Antarctica, but in some other parts of the world the reverse was the case: temperature and CO2 either rose in pace or temperature lagged CO2. Figure 2 demonstrates this graphically and shows how things are never as simplistic as purveyors of misinformation would wish.

Shakun Fig 2a 

Figure 2: Average global temperature (blue), Antarctic temperature (red), and atmospheric CO2 concentration (yellow dots). Source.

Last updated on 14 February 2023 by John Mason. View Archives

Printable Version  |  Offline PDF Version  |  Link to this page

Argument Feedback

Please use this form to let us know about suggested updates to this rebuttal.

Related Arguments

Further reading

That CO2 lags and amplifies temperature was actually predicted in 1990 in a paper The ice-core record: climate sensitivity and future greenhouse warming by Claude Lorius (co-authored by James Hansen):

"Changes in the CO2 and CH4 content have played a significant part in the glacial-interglacial climate changes by amplifying, together with the growth and decay of the Northern Hemisphere ice sheets, the relatively weak orbital forcing"

The paper also notes that orbital changes are one initial cause for ice ages. This was published over a decade before ice core records were accurate enough to confirm a CO2 lag (thanks to John Mashey for the tip).

Also, gotta love this quote from Deltoid in answer to the CO2 lag argument: See also my forthcoming paper: "Chickens do not lay eggs, because they have been observed to hatch from them".

Further viewing

Denial101x video

Myth Deconstruction

Related resource: Myth Deconstruction as animated GIF

MD Lag

Please check the related blog post for background information about this graphics resource.

Fact brief

Click the thumbnail for the concise fact brief version created in collaboration with Gigafact:

fact brief

Comments

Prev  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  Next

Comments 351 to 375 out of 529:

  1. If the Milankovitch forcing triggers the beginning (and end) of interglacial periods with the release of CO2 and other greenhouse gasses providing the positive (and negative) amplification, then I think that it is very important to understand why the heating at the beginning of the Holocene ended short of the previous maximum temperature of the previous four interglacial periods. The benign temperature stability of the Holocene is a major factor in the development of civilization which arguably might not have happened at a higher (or lower) temperature. I haven't seen an argument as to why the heating ended prematurely. Can you direct me to relevant research?
  2. Islander, your comments seem to imply you think all ice ages should be equal? However, the milankovitch forcings driving the glacial cycle vary because of the superposition of cycles. To see this, have a look at the graph and discussion here. Also worth having a read of Berger and Loutre 2002 to see some idea of the factors in whether the forcings trigger an ice age or not. There is a 5 part series discussing comparisons with the last interglacial here.
  3. Hi, just joined the site trying to find clarification on some areas of climate change. I came here on recommendation from another forum to get info on why the CO2 lagging temperature wasn't counter to the claims regarding danger of increased CO2. I have ploughed halfway through these comments, with a couple of sidetracks along the way for linked articles. Although several of my initial questions have been answered in the article or in responses to other posters, there is a new one that either haven't been or I missed/misunderstood. If it has already been answered or are answered in the remaining comments please bear with me. I get the Milankovitch cycles and how it changes the gross heat entering the earth, and am happy with CO2 radiation absorption and vapour pressure causing oceans to release CO2 as they heat up which then absorbs more heat, which causes positive (but not runaway) feedback. I also get the difference between CO2 lagging temperature because it is a feedback mechanism, and the current man-made CO2 increase which is acting as a forcing mechanism. What I am missing is why the extra man-made forcing is such a critical factor for earth's climate. I don't mean for the effect on large numbers of species that may/will go extinct because they can not change or migrate fast enough, and I am not considering the serious issues associated with innundation of low lying areas cause by 1-2m sea level rises. But it seems from the cycles over the last 500k years, that there is some sort of feedback system that always strongly brings the temperature back down despite maximum CO2 levels for some time after the temperature starts falling. I would expect the gross heat effect from the Milankovitch cycles to be a maximum when closest and least when furthest (with smaller variations caused by tilt and wobble), so would expect the temperature, even with feedback mechanisms when both heating and cooling, to be cyclical, with the fastest change occurring somewhat after the closest and furthest approach, and the maximum and minimum to occur half way between. What I don't understand is why the change here so linear, either relatively constant cooling, followed by faster but also relatively constant heating. If there is something that can trigger such rapid (less than 1/8th cycle) changes, it must have a far more significant and powerful effect (at the turn around points) than the known feedback mechanisms I have read about so far. I assume it is either powerful (tectonics?) and/or fast (geologically) to have such a profound sudden affect. Please don't respond "it's not sudden if you expand the timescale of the graph", without explaining why the relative rate compared to the length of the cycle is not significant. All the feedback systems I know produces cyclic variations where the highest rate of change is mid cycle with lowest rate of change at the peaks - these graphs definately do not follow that norm. I would also appreciate not being asked to propose an alternative cause to CO2 (which I accept is a greenhouse gas); apart from the fact that lack of a suitable alternative idea does not validate a claim, I am here because I am not the one with the expertise. If I appear defensive, please forgive me, but these two (I believe invalid) counter arguments have been used the few times I thought this question may get adressed in the discussion. Seondly, I am confused by the label on the temperature axis for the first graph. The label says temperature change, but I assume it just means temperature, otherwise zero would be nearer the middle?
  4. Dougal, I'll answer your post in parts, because it is so long. I'm not entirely sure I understand all of what you're saying, because you seem to include some misunderstandings in there. First, the simple and most important point:
    What I am missing is why the extra man-made forcing is such a critical factor for earth's climate.
    Because the amount of carbon available to the system has been well constrained in the last 800,000 years to pretty much stay below 300 ppm, even at peak. There simply wasn't enough carbon to go around for feedbacks to keep adding CO2 beyond that. It took man, digging up 337 Gt of carbon (and counting) that had previously been sequestered underground in fossil form to provide a source of carbon that would allow levels to rise above 300 ppm. A large portion of the temperature rise from glacial to interglacial is due to CO2 feedbacks due to the 100 ppm increase. So why wouldn't a further 100 ppm, 200 ppm or more greatly influence temperatures?
  5. Dougal,
    I would expect the gross heat effect from the Milankovitch cycles to be a maximum when closest and least when furthest (with smaller variations caused by tilt and wobble)...
    I think this points to a misunderstanding of what happens due to orbital variations. The earth does not get warmer or colder due to distance from the sun. It actually doesn't get very much warmer or colder at all due to the variations in orbit. All that changes is the length and intensity of the seasons in each hemisphere. Because the northern hemisphere is mostly land, particularly in that sensitive area around the poles (Siberia, Canada), while the southern hemisphere is mostly water, then the length and duration of the northern hemisphere summer becomes key. If summer is too short and cool, then ice sheets can grow and expand in the NH. These reflect a lot more of the incoming sunlight than either open water, tundra or vegetation covered land. That actually changes the temperature of the planet and cools it off. Conversely, when the axial tilt and other factors conspire to lengthen/strengthen the NH summer, the ice sheets will have longer to melt and less time to grow back in winter. The earth will absorb more sunlight/energy (instead of reflecting it back into space). This will warm the earth, and add to the retreat of the ice sheets. Then CO2 adds its punch on top of that.
  6. Dougal, To translate what I just explained... there are basically tipping points. Once the ice sheets start to grow, that continues and the planet falls into a glacial state. It will remain there until a variety of orbital factors combine to toggle the system in the other direction. The rise is then fast once the change has been kick-started. I'm unsure exactly why the opposite is so gradual, except that it is really sort of the natural state of the planet (to be partially ice-covered, that is), but it takes a very, very long time to draw down CO2 once it has been increased. That CO2 blanket keeps the planet warm and the ice sheets from expanding even though otherwise the orbital configuration "wants" the planet to be in a glacial state. And with all of that said, the next orbital configuration to really get us into a true glacial state isn't supposed to be for another 10,000 to 20,000 years (it's not that easy to compute), so that at least is not really worth discussing.
  7. Dougal, On the graphs, "temperature change" means increase or decrease from a chosen baseline (our current climate). The data is from this paper by Petit (2000) and is done by proxy (O18 isotope levels), and as such is relative to current O18 isotope levels (which are indicative of current temperatures). This is why it is presented as "difference from today" rather than an absolute value, because what is being used to present the data is a difference, not an absolute, in something else. [It's rather like measuring the change in the tide. You can see how much the water level has risen by looking at a marker on a pole, without necessarily knowing how deep the water is beneath the pole. You can confidently say the water has risen X inches -- the change -- but it doesn't really make sense to bother to try to make that into an absolute depth.]
  8. Dougal, Just to state it a little more directly (as to why the rise is fast, but the decline is slow)... it's a lot easier to melt the ice sheets and thereby increase CO2 and heat the planet, than it is to reduce the CO2, and thereby cool the planet and create new ice sheets. The two processes are not exact, diametric opposites. Hence the difference.
  9. "And with all of that said, the next orbital configuration to really get us into a true glacial state isn't supposed to be for another 10,000 to 20,000 years"
    Earlier, Tyrrell et al 2007 examined this, concluding that we have already skipped the next glacial epoch. Furthermore, Tyrrell concludes that if we continue our present fossil fuel consumption, we will skip the next 5 glacial epochs. With that said, per Tzedakis et al 2012, “glacial inception would require CO2 concentrations below preindustrial levels of 280 ppmv” (for reference, we are at about 396 right now…and climbing). With the millennial atmospheric lifetime of CO2, no glacial epochs will be occurring the next million years…
  10. @Sphaerica Thanks you for those. Sorry for the long post, but needed to try to explain the piece I was missing. I will address if I may also in parts. 357: So it relative to a nominal temp, thanks. Change (as I understand it) just didn't make sense (to me anyway).
  11. @Sphaerica 355: That seems a bit disengenuous - it is the closeness of the orbit that is causing the longer NH summer and shorter NH winter which increases the icemelt and reduces the ice growth which leads to temperature change which amplifies the ice sheet change. I believe from what you said that the amount of cooling/heating is related to the size of the ice sheets - larger ice sheets, more reflection. Similarly the length of NH summer/winter is related to the closeness of the orbit adjusted on a shorter period cycle by tilt and wobble - closer orbit, longer summer, reduced ice sheets, more cooling. Lastly the temperature also changes the CO2 level (in the past) and warmer oceans release more C)2 which increases the warming and reduces the ice sheets, etc. So these three factors combine cause increasing warming the warmer the planet gets. So at the end of a glacial period we have minimum CO2, and maximum ice sheets, while the orbit is getting closer at a cyclic rate - why isn't there balance and a slow shift to warming? Is there something that causes the ice sheets to start melting quickly despite only small change in NH winter/summer, extensive ice sheets and sustained high CO2? That is what I can't reconcile. Do any of the linked reports have graphs which include the Milankovitch cycle, or anywhere that has the Milankovitch cycle data which I can then combine with that from Petit (2000) to generate my own analysis? In fact I think that is what I will need to do, to lok closely at the rate of change which appears to spike massively at the 'tipping points'.
    Response: TC:Suggesting that another poster is disingenuous is sailing close to the wind on the comments policy, especially with regards to the clauses about no ad hominens, and the requirement to not be inflammatory. If a moderator deems you to have violated the comments policy, they may warn you, snip the offending text, or simply delete the entire comment. The later is by far the easiest procedure, so by violating the comments policy you make your post a hostage to fortune. A word to the wise... In this case I have given you the benefit of the doubt and assumed you are not suggesting that Sphaerica is dishonest (which would violate the comments policy), but only that he has not discussed all the relevant facts. If you continue to counter corrections to your factual errors with similar suggestions, I will not continue giving you the benefit of the doubt.
  12. @Sphaerica 358: Sorry, it was not the relative rate of warming to cooling I was raising, but the fairly constant (albeit different) rate in both. Unusual in a cyclic system where rates are less at the peaks and maximum at the mid points. But since you raise it, why is it easier to melt than freeze - is it because melt water runs off exposing more of the cold ice sheet and maintaining a larger temperature incline at the sheet compared to when it is growing as water freezes it heats the local air reducing the temperature incline and so rate of growth? Possibly also because it can welt whenerver the temperature is high enough, while to grow it needs an equivalent cold temperature and water.
  13. Dougal, I'm heading out, but no, it is not the closeness of the orbit. There are multiple factors, including axial tilt, precession, shape of the orbit (ellipse versus circular), and others. Distance changes very little. I'll explain more later.
  14. Dougal @361, I believe you and Sphaerica are talking past each other. Averaged over the year, the Earth was neither closer to, nor further away from the Sun during the Last Glacial Maximum (LGM) or the Holocene Climactic Optimum (HCO). That is what Sphaerica is suggesting. You appear to be suggesting the opposite, but I think you are actually talking about the position of the Earth during Northern Hemisphere summers. Even then you are only partially correct. There are a number of factors which effect the strength of NH summers, of which the most important is the obliquity of the Earth, ie, the tilt of its axis. Because of the tilt of the Earth's axis, incoming sunlight is closer to the zenith in around June and July in the NH, resulting in greater insolation even though the Earth is further from the sun at that time. Thus axial tilt is a dominating factor in determining the timing of the seasons (at least currently). Where orbital eccentricity the primary factor, then NH and SH would experience summer at the same time. In addition to obliquity (axial tilt) and eccentricity (how close the Earth approaches the Sun at its closest approach each year) the other important factor is correlation between the two. The LGM was ended because precession resulted in the NH summer coinciding with perihelion (closest approach), and hence with particularly warm NH summers. Currently the axial tilt is such that NH summers more or less coincide with aphelion (furthest distance). Ignoring all three relevant factors, of failing to specify that what is modified is NH summer insolation, so that it is the configuration during the NH summer that is relevant can only lead to confusion. Finally, I refer you to this excellent article for further discussion.
  15. Dougal, The problem is that you're still stuck on "closeness." Let me explain the orbital factors a little more clearly. First, consider the seasons. The reason that there is a summer and a winter is primarily not that the earth is closer to the sun in the summer... if so, then how come both hemispheres don't have their summer at the same time? The reason is axial tilt. Sunlight hits the northern hemisphere more directly, and so more strongly and for longer days, in the summer, and the opposite in winter. But this axial tilt doesn't stay the same. Over time it changes, both in direction relative to the sun and in degree (sometimes more straight up, and possibly a few degrees more tilted than now). So does the overall shape of the orbit. Consider, too, that even if the earth were closer to the sun during one season, it would be further in another... the net sunlight received by the Earth would vary very little in total. When you abandon your too simplistic view of closer/farther you realize that multiple factors must all align to knock the system out of "glacial mode." Read this post.
  16. 362, Dougal,
    But since you raise it, why is it easier to melt than freeze - is it because melt water runs...
    Again, your model is so simple that you're missing it. The main factors are CO2, seasonal insolation and albedo. Think about it. I am (really) heading out now. I'll explain in more detail when I return.
  17. @Sphaerica 363: Sorry, I am obviously mistaken in my understanding of the Milankovitch cycle and how it affects global temperature, I need to read up more on it. I wasn't meaning to imply you were dishonest above, just that it appeared you weren't addressing my question - this appears to be caused by my misunderstanding of the Milankovitch cycle - my fault all round. @Tom 364: As mentioned, my understanding of Milankovitch needs to be repaired (starting with your link), so my lack of immediate response is not ignoring you, I am paying attention, but think it best I shut up and lurk at least until I have done some more research on it (and stop confirming I am a fool). :) Thank you all for your comments, you have given me some very useful avenues of research, I will definitely be back. This is the most informative factual site I have found on the topic so far. Cheers
  18. Dougal @367, better to ask a question and be thought a fool, than to be silent and remain one! Not, of course, the I or Sphaerica think you are foolish. Quit the contrary, it is the mark of wisdom to ask questions. So, in your further reading, if you have additional questions, by all means ask them. @362, in fact the response of global temperatures to the Milankovitch Cycle is far more typical than you believe. Compare the chart of insolation at 65 degrees North in the NH summer below to the temperature increases other than at 30 to 90 degrees North in the following chart: As you can see, tropical and SH temperatures do follow the changes in NH summer insolation, although they are significantly lagged. What is more, SH temperatures are following NH insolation patterns, while NH extratropical temperatures do not. Clearly something very complicated is going on here, and Shakun et al offer a partial explanation. Given that, I recommend you read the SkS article on Shakun et al carefully, and follow up questions on this point there.
  19. Just to add a small part to the discussion here, at least one of the feedbacks involved in enhancing the Milankovitch signal is decidedly asymmetric - ice sheet accumulation/ablation. Ice melt and loss through calving or increased flow always has far greater potential to operate at a much higher rate than ice accumulation through precipitation or slowing of ice flow. This can be seen in concepts as simple as the AAR on a valley glacier - the accumulation-ablation area ratio. The accumulation area is usually ~60% of a glacier's mapped area, to compensate for the higher rate of loss through melt per unit area of a glacier. Bigger mechanisms in ice sheet buildup or loss are similarly asymmetric. It's eaasier to melt very large volumes than to add large volumes.
  20. Dougal, You have enough to chew on for now about Milankovitch cycles, but to give you one very direct and easy to understand example as to why de-glaciation is fast, while re-glaciation is slow, consider simply the surface area of a sphere, or more importantly, the circumference. For understanding purposes only, imagine two cases, one with ice that covers the entire northern hemisphere all the way down to the equator (our oversimplified and exaggerated "glacial" state) versus one with ice that extends only as far south as the northern coast of Greenland. Look at a globe. If you were to change the seasons in a way that the ice in the first case retreats 5 degrees further north, and in the second case extends 5 degrees further south... Each scenario affects temperature by changing the overall albedo of the planet. But the effect near the equator is much, much greater, through the combination of (a) covering far more surface area (and in that way changing the total energy reflected by a greater amount) and (b) changing the albedo in a more important place (i.e. year round 12 hour days of very direct light at the equator versus half a year of long days and half a year of no daylight and with very indirect light at the pole). So you have an asymmetric situation, one in which a change from glacial-to-interglacial (retreat of ice from the equator, far south) produces a much stronger feedback than the change from interglacial-to-glacial (advance of ice from the pole, far north).
  21. Dougal, Note that I'm not saying that this is the reason or even necessarily a factor. I'm just pointing it out to give a clear example as to how the two transitions are asymmetric and therefore do not need to parallel each other like the motion of a bouncing ball or a yo-yo.
  22. Recall, too, that glacial advance requires snowfall, compaction and buildup. That's inherently a multi-year process. Once the glaciers spread beyond their valleys to become continental ice sheets, that process must occur over a vast geographic area, inevitably slowing it down. Deglaciation can start the first year there is less accumulation. For direct evidence of how fast that can be, consider the catastrophic flooding that results from ice dam collapse. There is no analogous 'fast process' on the buildup side.
  23. Could someone comment on the paper released today in Global and Planetary Change : "The phase relation between atmospheric carbon dioxide and global temperature" Humlum, Stordahl and Solheim. Abstract is at http://www.sciencedirect.com/science/article/pii/S0921818112001658 but the full text is behind a pay wall. "Ice cores show atmospheric CO2 variations to lag behind atmospheric temperature changes on a century to millennium scale, but modern temperature is expected to lag changes in atmospheric CO2, as the atmospheric temperature increase since about 1975 generally is assumed to be caused by the modern increase in CO2." HIghlights "...►Changes in ocean temperatures appear to explain a substantial part of the observed changes in atmospheric CO2 since January 1980. ► CO2 released from use of fossil fuels have little influence on the observed changes in the amount of atmospheric CO2, and changes in atmospheric CO2 are not tracking changes in human emissions." Has this paper gone through peer review and what do SKS regulars think of it. What's the issue or explanation?
    Response: [DB] Please do not hit the refresh after submitting a comment. This forces the browser to post a duplicate message(s).
  24. David - you really do have to wonder how such nonsense gets published. Ocean acidification i.e. the increase of global atmospheric carbon dioxide dissolved in sea water renders the thrust of this paper null & void. For a relatively thorough treatment of this subject I'd recommend this SkS post: Climate Change Cluedo: Anthropogenic CO2 Where does Humlum think all human carbon dioxide emissions are disappearing to anyway?
  25. David Sanger - I have not yet had a chance to read through the paper, but some of the abstract is quite odd. "Changes in ocean temperatures appear to explain a substantial part of the observed changes in atmospheric CO2 since January 1980." - Based on ice core evidence, it takes 500-800 years for CO2 to respond to ocean temperature changes, and the 100 ppm change seen between glacial and interglacial periods is associated with 5-6C of temperature change. Since 1980 (32 years) we've seen 0.5C of warming and more than 50 ppm increase. Those numbers just don't support their conclusions. Even more damning, ocean CO2 is increasing as the oceans acidify. They cannot be the source of CO2 increase. Given those basic issues wherein the facts contradict this papers conclusions, I suspect the paper as a whole is not a contribution to science.

Prev  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  Next

Post a Comment

Political, off-topic or ad hominem comments will be deleted. Comments Policy...

You need to be logged in to post a comment. Login via the left margin or if you're new, register here.

Link to this page



The Consensus Project Website

THE ESCALATOR

(free to republish)


© Copyright 2024 John Cook
Home | Translations | About Us | Privacy | Contact Us